TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Visualizing the Discrete Fourier Transform

68 pointsby rndnover 9 years ago

5 comments

chestervonwinchover 9 years ago
Rather than funny analogies about signals spinning on poles, I think it&#x27;s relatively easy to understand what the DFT is with just two things that many people already know: 1) knowledge of the complex exponential definition of Fourier series [1], and 2) how to approximate integrals with the left rectangle rule [2].<p>Take your continuous signal and represent it with a Fourier series. Since the Fourier series is a linear decomposition into integer frequency sinusoids, the coefficients of the series tell you the amount of each frequency contained in the signal. The DFT gives you an approximation of these.<p>The coefficients of the Fourier series of a function are integrals. Approximate these integrals with a left Riemann sum. Integrals turn into sums ... sums turn into a linear system ... the linear system turns into a matrix ... bingobango there&#x27;s the DFT matrix [3].<p>[1]: <a href="http:&#x2F;&#x2F;users.wpi.edu&#x2F;~goulet&#x2F;Matlab&#x2F;overlap&#x2F;efs.html" rel="nofollow">http:&#x2F;&#x2F;users.wpi.edu&#x2F;~goulet&#x2F;Matlab&#x2F;overlap&#x2F;efs.html</a><p>[2]: <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Riemann_sum#Left_Riemann_Sum" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Riemann_sum#Left_Riemann_Sum</a><p>[3]: <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;DFT_matrix" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;DFT_matrix</a>
评论 #10272423 未加载
评论 #10273858 未加载
评论 #10273644 未加载
JshWrightover 9 years ago
On a similar note, The Engineer Guy&#x27;s walkthrough of Albert Michelson&#x27;s Harmonic Analyzer gave me a much better understanding of Fourier analysis in general.<p><a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;playlist?list=PL0INsTTU1k2UYO9Mck-i5HNqGNW5AeEwq" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;playlist?list=PL0INsTTU1k2UYO9Mck-i5...</a>
gruezover 9 years ago
Why not link to the original site? <a href="http:&#x2F;&#x2F;www.billconnelly.net&#x2F;?p=276" rel="nofollow">http:&#x2F;&#x2F;www.billconnelly.net&#x2F;?p=276</a>
评论 #10274204 未加载
Thripticover 9 years ago
I found this video to be an incredibly useful explanation of the Fourier Transform: <a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=FjmwwDHT98c" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=FjmwwDHT98c</a>
saintxover 9 years ago
I love the way they used color and plain English to describe that function. It would be awesome if a general app for this sort of color coded simple translation were available to help kids learn about mathematics. It&#x27;d have to be more inclusive for people with dichromacy and anamalous trichromacy, but there could be settings in the app to compensate for that.