TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Mathematicians are chronically lost and confused (2014)

250 pointsby Halienjaalmost 9 years ago

18 comments

laingcalmost 9 years ago
To me, this is about &quot;mathematical maturity&quot;.<p>My observation is that many programmers, especially those who have come of age by working in startups, tend to value ability and sometimes experience over formal education. This is a result, I believe, of noticing that they can outperform many people who have a classical education, and also seeing that many of the people to whom they look up also do not have much in the way of formal education.<p>However, I truly believe that Mathematics is a discipline that is very hard to engage with outside of formal education - or at least nobody has really found a great model for doing so yet.<p>Learning Mathematics in a classical, structured way really does change the way you think. I notice a substantial difference even between those of my colleagues who entered industry straight after their Masters or even Bachelors, and those who completed Doctorates or even held postdoctoral positions.<p>In my opinion, it is this lack of mathematical maturity that makes the switch from general programming to scientific programming more challenging than the converse.
评论 #11875790 未加载
评论 #11876949 未加载
评论 #11876239 未加载
评论 #11878965 未加载
评论 #11878157 未加载
评论 #11877328 未加载
评论 #11877314 未加载
评论 #11876009 未加载
vecteralmost 9 years ago
I have a great personal story that highlights how long the journey of understanding mathematics is.<p>I took linear algebra my freshman year of college. It was the non-math major course, so it didn&#x27;t require proofs. I got an A+ in the class. Not just an A, an A+. I was able to obtain such a high grade by taking tons of practice tests, and since the actual tests were basically mildly veiled calculations, I just had to map the question to the right calculation. So for instance, if after a little interpretation, I figured out that the question was asking for me to calculate the singular value decomposition of a given matrix, I would mindlessly compute, check my algebra, and move on.<p>However, it was very clear to me by the end of the course that I didn&#x27;t really understand what the heck linear algebra was about.<p>Five years later, I started a job as an algorithmic trader. One of the first things my boss wanted to do was to do a Principal Component Analysis (PCA) of bond price movements. This is a very common thing to do. I didn&#x27;t know what PCA was, but I read a short paper he gave me and I was able to grok it. After reading that paper and actually performing the PCA (which by the way was basically one line of R code), I finally came to understand the core essence of linear algebra, which is the idea of linear transformations. I was able to connect the equation Ax=lambdax to the geometry of what an eigenvector meant. Through a little more reasoning, I realized that every real matrix corresponded to a linear transformation of that space via a rotation, a reflection, a stretching, a shearing, etc. At that point, all of the mindless calculations I had been doing half a decade earlier instantly clicked, and I was enlightened.<p>This was literally half a decade later after I &quot;aced&quot; my linear algebra class. I know that it seems absolutely ridiculous that I could &quot;score so well&quot; in a math class yet so clearly miss the core idea behind the entire class, but that&#x27;s been my experience with math for as long as I can remember. You start by doing the calculations and just getting comfortable with them. Some arbitrary time later, you have an insight and suddenly everything is so crystal clear and trivial that you wonder how you could even <i>not</i> have understood it before.<p>Oh, and even to this day, I don&#x27;t understand what singular values actually are. Something to do with a mapping from the row space to the column space, blah blah. I&#x27;m sure if I spent an hour to read about them and picture the geometry, I could figure it out, but I just haven&#x27;t gotten around to doing it.
评论 #11876152 未加载
评论 #11875535 未加载
评论 #11877288 未加载
评论 #11875160 未加载
评论 #11877640 未加载
评论 #11875442 未加载
评论 #11876655 未加载
评论 #11877117 未加载
评论 #11875448 未加载
评论 #11879893 未加载
评论 #11876744 未加载
j2kunalmost 9 years ago
Author here.<p>I can&#x27;t help but plug my mailing list for a book I&#x27;m writing, called &quot;A Programmer&#x27;s Introduction to Mathematics.&quot; Cheers, and thanks for reading!<p><a href="https:&#x2F;&#x2F;jeremykun.com&#x2F;2016&#x2F;04&#x2F;25&#x2F;book-mailing-list&#x2F;" rel="nofollow">https:&#x2F;&#x2F;jeremykun.com&#x2F;2016&#x2F;04&#x2F;25&#x2F;book-mailing-list&#x2F;</a>
te_plattalmost 9 years ago
This reminds me of the book &quot;The Perfect Wrong Note&quot;. The book is focused on learning to play music but the principles it teaches apply to learning just about anything. The core message to not be afraid of mistakes during practice. Little kids fall over when they learn to walk, you&#x27;ll have moments of confusion learning new things. There&#x27;s a time to get things done well, like playing at a recital or releasing production code. There also needs to be time to practice and part of practicing is the expectation that there will be mistakes.
friendly_chapalmost 9 years ago
I feel the same way when solving tasks in my day job. The thing I tell to young people learning programming&#x2F;tech that I hope they don&#x27;t get frustrated easily, because they will spend every day of their life feeling rather stupid and confused, never knowing when will they discover a solution for a particular problem.<p>This is something that was a great source of stress early in my career.
评论 #11875102 未加载
评论 #11874901 未加载
jonstokesalmost 9 years ago
A mathematician was walking home from campus one day, and as he walked he was pondering a particularly thorny problem. At one point, he snapped out of his reverie and looked around and realized that he had no idea where he was. He saw a young boy playing with a ball in a yard, and figured maybe the boy could tell him the way home. So he says to the boy, &quot;young man, do you know where Prof. So-and-so lives?&quot;<p>The boy looked at him and said, &quot;Dad, what&#x27;s wrong with you?&quot;
评论 #11878612 未加载
jonduboisalmost 9 years ago
My favourite quote about Mathematics is from John von Neumann: &quot;In mathematics you don&#x27;t understand things. You just get used to them.&quot; - This quote highlights precisely why I ended up choosing software engineering over maths.<p>I&#x27;m just not very good at applying processes&#x2F;methodologies which I don&#x27;t fully understand.<p>For example, I wasn&#x27;t very good with linear algebra until I was able to visualize the equations in my head. For example, now, when I think about the equation &#x27;f(x) = ax^2 + bx + c&#x27; - I can see that this represents the set of all possible quadratic equations and I can roughly visualize what that looks like on a cartesian plane (well it would turn the whole plane black because there would be an infinite number of graphs). Then if I choose any three points on that crowded cartesian plane, I can visualize that among this infinite set of curves, one of them passes through all three points. Thinking about it in that way allows me to make sense of Gauss-Jordan Reduction and other mathematical processes related to linear algebra.<p>Programming is much easier for me because I can visualize the results instantly on a computer - I don&#x27;t need someone else to explain it to me. Any uncertainty can be quickly resolved by simply running some code.
评论 #11880880 未加载
评论 #11876538 未加载
kinaialmost 9 years ago
Does anybody know a good guide on where to begin? Resources are not the issue here, but usually the overwhelming amount of information regarding all those topics and areas of mathematics. I was always very interested but got discouraged rather quickly, even after a semester at university. So far my favorite access to math was through philosophy.
评论 #11875028 未加载
评论 #11877435 未加载
评论 #11877381 未加载
评论 #11879434 未加载
评论 #11874913 未加载
评论 #11875525 未加载
评论 #11875632 未加载
评论 #11875092 未加载
评论 #11875002 未加载
评论 #11874894 未加载
reachtarunherealmost 9 years ago
As an undergrad who recently became serious about math (thanks to its importance in areas I am interested in) this is very inspiring. I have been trying to grok mathematics for some time and sometimes being too frustrated with problems I can&#x27;t handle. I have experienced the phenomena of giving up on something and coming back to it and finding it trivial. This is exactly what I needed.
riazrizvialmost 9 years ago
Beautiful article. Love the advice at the end!:<p>&quot;What’s much more useful is recording what the deep insights are, and storing them for recollection later. Because every important mathematical idea has a deep insight, and these insights are your best friends. They’re your mathematical “nose,” and they’ll help guide you through the mansion.&quot;
评论 #11878527 未加载
auvrwalmost 9 years ago
tao&#x27;s stages of math is relevant<p><a href="https:&#x2F;&#x2F;terrytao.wordpress.com&#x2F;career-advice&#x2F;there%E2%80%99s-more-to-mathematics-than-rigour-and-proofs&#x2F;" rel="nofollow">https:&#x2F;&#x2F;terrytao.wordpress.com&#x2F;career-advice&#x2F;there%E2%80%99s...</a>
l3robotalmost 9 years ago
What a great blog post! Totally agree with him. And, personnaly, it is why i&#x27;m having so much fun doing maths. Everytime it&#x27;s a new exploration, a new challenge. My best math teacher I had was seeing math with this philosophy in mind and his class was like discovering new lands every time. I&#x27;m sure that if we explained in a way that failing a math problem is as normal and challenging that failing a Mario Bros Level, more people would be in peace with it.
pjlegatoalmost 9 years ago
&gt; <i>Finally, after six months or so, you find the light switch, you turn it on, and suddenly it’s all illuminated. You can see exactly where you were. Then you move into the next room and spend another six months in the dark...</i><p>What are you supposed to do if you like math and the idea of grokking it, but you also have a job and a family and can&#x27;t afford to spend six months contemplating each room in the mansion?
评论 #11878774 未加载
Koshkinalmost 9 years ago
One of the ways to acquire a taste for mathematics is to try solving elementary but challenging problems, such as those included in MathCamp&#x27;s qualifying quizzes: <a href="http:&#x2F;&#x2F;www.mathcamp.org&#x2F;prospectiveapplicants&#x2F;quiz&#x2F;pastquizzes.php" rel="nofollow">http:&#x2F;&#x2F;www.mathcamp.org&#x2F;prospectiveapplicants&#x2F;quiz&#x2F;pastquizz...</a>.
pm24601almost 9 years ago
All they have to do is read this article: <a href="https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=11874395" rel="nofollow">https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=11874395</a>
MikeNomadalmost 9 years ago
Shouldn&#x27;t the year the article was written (2014) be included in the title?
justifieralmost 9 years ago
any discipline where you are attempting to answer yet to be answered questions leaves you in a state of chronic confusion and lacking direction<p>math the same
gauruvbosealmost 9 years ago
&quot;mathematicians don’t work like this&quot;? Sure they do. Reading textbooks is normal. As a mathematician, this post is foreign.