TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Variational Inference for Machine Learning [pdf]

79 pointsby alex_hirnerover 8 years ago

2 comments

marmadukeover 8 years ago
Stan and PyMC3 both implement automatic differentiation based variational inference, so you can write down your statistical model and not care &quot;much&quot; about derivatives.<p><a href="http:&#x2F;&#x2F;mc-stan.org" rel="nofollow">http:&#x2F;&#x2F;mc-stan.org</a> <a href="https:&#x2F;&#x2F;github.com&#x2F;pymc-devs&#x2F;pymc3" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;pymc-devs&#x2F;pymc3</a>
评论 #12872373 未加载
评论 #12873203 未加载
coherentponyover 8 years ago
&gt; Many samples needed, especially in high dimensions<p>This isn&#x27;t true. For Monte Carlo sampling, the convergence of unbiased estimators (for example the expectation) is independent of the dimension of the state space. In fact, this is exactly the reason to <i>prefer</i> Monte Carlo integration over, say, a Riemann sum.
评论 #12869544 未加载
评论 #12869541 未加载
评论 #12870159 未加载