So, having played/worked with a few time-series databases, this just doesn't seem to fit the picture we're used to. For applications having to store a set of well-defined time-series in a more optimal way, it looks great. As a generic time-series database on the other hand, this sounds like a maintenance nightmare.<p>I quite like Postgresql (and deploy it all the time), and I'm no fan of nosql stuff, which just means you don't have to properly analyze your database structure before-hand, but with time-series it's different matter. The data you tend to send to generic time-series databases tends to be very unpredictable. I currently don't care what data is sent to Prometheus or Influx. This includes, but is not limited to ZFS stats of our storage, system load, network traffic, VMWare, nginx/haproxy, application usage and errors, ... I know that when I'll need it, I'll have it available and can try to correlate the data at any point in the future. In TimescaleDB it looks like I would have to pre-create tables fitting all those stats, which would make it an absolute pain in the ass.<p>As counter-intuitive as it sounds, to do it properly/flexible/usable in a real world, you should impose a fixed/limited database structure. The tgres project mentioned elsewhere in this thread seems a lot more useful for 'generic' cases. Maybe they can be combined in some way.<p>Also, some other important things in the time-series world are a REST api. Yes you might want advanced SQL to query data, but no you don't want that to insert it. Pretty much any application can do http(s) stuff without any additional libraries (except when you're talking about C/C++ things). Postgres on the other hand? Oh no I need a JDBC driver for this Java app, I need an extra Python library for X, ... Not to mention you suddenly have to manage database pools in the applications and have something that is a potential bottleneck.<p>Then, no Grafana support is a no-go. It is the de-facto standard visualization tool these days.<p>What about retention policies, you don't need ms-accurate data-points from 2 years ago, when talking about many data-points, you might want to aggregate this. Though since the data set in TimescaleDB will be limited due to specific data-sets, this could be less of a problem.