Whenever I hear about memristors, I think back on this guy I came across online, whose company blog publishes stuff like this:
<a href="https://knowm.org/thermodynamic-computing/" rel="nofollow">https://knowm.org/thermodynamic-computing/</a><p>He patented a memristor design, and seemingly has some wild ideas stemming from his work with them.<p>> My statement stems from our work with AHaH Computing. When two energy-dissipating pathways compete for conduction resources, a Knowm synapse (aka kT-Bit) will emerge and it can be shown that the pair maximizes power dissipation while driving Hebbian or Anti-Hebbian learning. We see this building block for self-organized structures throughout Nature, for example in arteries, veins, lungs, neurons, leaves, branches, roots, lightning, rivers and mycelium networks of fungus.
>
> We observe that in all cases there is a particle that flows through competitive energy dissipating assemblies. The particle is either directly a carrier of free energy dissipation or else it appears to gate access, like a key to a lock, to free energy dissipation of the units in the collective. Some examples of these particles include water and sugars in plants, ATP in cells, blood in bodies, neurotrophins in neurons, and money in economies. In the cases of whirlpools, hurricanes, tornadoes and convection currents we note that although the final structure does not appear to be built of competitive structures, it is the result of a competitive process with one winner; namely, the spin or rotation. In other words, a hurricane is a ‘collapsed kT-Bit’.