TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Duckdb-nsql: 7B parameter text-to-SQL model by MotherDuck and Numbers Station

2 pointsby mccroryover 1 year ago

1 comment

mccroryover 1 year ago
DuckDB-NSQL-7B<p>Model Description<p>NSQL is a family of autoregressive open-source large foundation models (FMs) designed specifically for SQL generation tasks.<p>In this repository we are introducing a new member of NSQL, DuckDB-NSQL. It&#x27;s based on Meta&#x27;s original Llama-2 7B model and further pre-trained on a dataset of general SQL queries and then fine-tuned on a dataset composed of DuckDB text-to-SQL pairs.<p>Training Data<p>200k DuckDB text-to-SQL pairs, synthetically generated using Mixtral-8x7B-Instruct-v0.1, guided by the DuckDB v0.9.2 documentation. And text-to-SQL pairs from NSText2SQL that were transpiled to DuckDB SQL using sqlglot.<p>Evaluation Data<p>We evaluate our models on a DuckDB-specific benchmark that contains 75 text-to-SQL pairs. The benchmark is available here.<p>Training Procedure<p>DuckDB-NSQL was trained using cross-entropy loss to maximize the likelihood of sequential inputs. For finetuning on text-to-SQL pairs, we only compute the loss over the SQL portion of the pair. The model is trained using 80GB A100s, leveraging data and model parallelism. We fine-tuned for 10 epochs.<p>Intended Use and Limitations<p>The model was designed for text-to-SQL generation tasks from given table schema and natural language prompts. The model works best with the prompt format defined below and outputs. In contrast to existing text-to-SQL models, the SQL generation is not contrained to SELECT statements, but can generate any valid DuckDB SQL statement, including statements for official DuckDB extensions.<p>How to Use<p>Example 1:<p>import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(&quot;motherduckdb&#x2F;DuckDB-NSQL-7B-v0.1&quot;) model = AutoModelForCausalLM.from_pretrained(&quot;motherduckdb&#x2F;DuckDB-NSQL-7B-v0.1&quot;, torch_dtype=torch.bfloat16)<p>text = &quot;&quot;&quot;### Instruction: Your task is to generate valid duckdb SQL to answer the following question.<p>### Input:<p>### Question: create a new table called tmp from test.csv<p>### Response (use duckdb shorthand if possible): &quot;&quot;&quot;<p>input_ids = tokenizer(text, return_tensors=&quot;pt&quot;).input_ids<p>generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))<p>Example 2:<p>import torch from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained(&quot;motherduckdb&#x2F;DuckDB-NSQL-7B-v0.1&quot;) model = AutoModelForCausalLM.from_pretrained(&quot;motherduckdb&#x2F;DuckDB-NSQL-7B-v0.1&quot;, torch_dtype=torch.bfloat16)<p>text = &quot;&quot;&quot;### Instruction: Your task is to generate valid duckdb SQL to answer the following question, given a duckdb database schema.<p>### Input: Here is the database schema that the SQL query will run on: CREATE TABLE taxi ( VendorID bigint, tpep_pickup_datetime timestamp, tpep_dropoff_datetime timestamp, passenger_count double, trip_distance double, fare_amount double, extra double, tip_amount double, tolls_amount double, improvement_surcharge double, total_amount double, );<p>### Question: get all columns ending with _amount from taxi table<p>### Response (use duckdb shorthand if possible):&quot;&quot;&quot;<p>input_ids = tokenizer(text, return_tensors=&quot;pt&quot;).input_ids<p>generated_ids = model.generate(input_ids, max_length=500) print(tokenizer.decode(generated_ids[0], skip_special_tokens=True))
评论 #39169831 未加载