The set of integers {-1, 0, 1} seems to pop up in a surprising number of contexts.<p><pre><code> -1: The idea of negation or taking a step back.
0: The neutral point, the absence of something, or a
starting point. The singularity. Absolute 0. The origin
plot on a number line. etc.
1: AKA +1: The building block, the single unit from which
we construct. Represents the smallest possible unit of any
measurement (1,. .1, .01, etc).
</code></pre>
Rather than posit my own ideas and applications here in this OP, I am more interested in generating discussion here on HN and getting input from those with more knowledge and expertise in the area of mathematics and sets, and their various applications.<p>What would you say about this set either exclusively within mathematics or applied to any of those other fields of study which intersect?
If I could downvote this post, I would.<p>This is a little bit like asking about the significance of the number 2. What you're asking is way too general. What are we discussing? Maybe you can describe the contexts where you've seen this set and why you think it's surprising? Sets aren't usually studied in isolation.