There are certain counterintuitive things that you have to learn if you want to be a "systems engineer", in a general sense, and this whole async thing has been one of the clearest lessons to me over the years of how seemingly identical things sometimes can not be abstracted over.<p>Here by "async" I don't so much mean async/await versus threads, but these kernel-level event interfaces regardless of which abstraction a programming language lays on top of them.<p>At the 30,000 foot view, all the async abstractions are basically the same, right? You just tell the kernel "I want to know about these things, wake me up when they happen." Surely the exact way in which they happen is not something so fundamental that you couldn't wrap an abstraction around all of them, right?<p>And to some extent you can, but the result is generally so lowest-common-denominator as to appeal to nobody.<p>Instead, every major change in how we handle async has essentially obsoleted <i>the entire programming stack based on the previous ones</i>. Changing from select to epoll was not just a matter of switching out the fundamental primitive, it tended to cascade up almost the entire stack. Huge swathes of code had to be rewritten to accommodate it, not just the core where you could do a bit of work and "just" swap out epoll for select.<p>Now we're doing it again with io_uring. You can't "just" swap out your epoll for io_uring and go zoomier. It cascades quite a ways up the stack. It turns out the guarantees that these async handlers provide are very different and very difficult to abstract. I've seen people discuss how to bring io_uring to Go and the answer seems to basically be "it breaks so much that it is questionable if it is practically possible". An ongoing discussion on an Erlang forum seems to imply it's not easy there (<a href="https://erlangforums.com/t/erlang-io-uring-support/765);" rel="nofollow">https://erlangforums.com/t/erlang-io-uring-support/765);</a> I'd bet it reaches up "less far" into the stack but it's still a huge change to BEAM, not "just" swapping out the way async events come in. I'm sure many other similar discussions are happening everywhere with regards to how to bring io_uring into existing code, both runtimes and user-level code.<p>This does not mean the problem is unsolvable by any means. This is not a complaint, or a pronunciation of doom, or an exhortation to panic, or anything like that. We did indeed collectively switch from select to epoll. We will collectively switch to io_uring eventually. Rust will certainly be made to work with it. I am less certain about the ability of shared libraries to be efficiently and easily written that work in both environments, though; if you lowest-common-denominator enough to work in both you're probably taking on the very disadvantages of epoll in the first place. But programmers are clever and have a lot of motivation here. I'm sure interesting solutions will emerge.<p>I'm just highlighting that as you grow in your programming skill and your software architecture abilities and general system engineering, this provides a very interesting window into how abstractions can not just leak a little, but leak a <i>lot</i>, a long ways up the stack, much farther than your intuition may suggest. Even as I am typing this, my own intuition is still telling me "Oh, how hard can this really be?" And the answer my eyes and my experience give my intuition is, "Very! Even if I can't tell you every last reason why in exhaustive detail, the evidence is clear!" If it were "just" a matter of switching, as easy as it <i>feels</i> like it ought to be, we'd all <i>already</i> be switched. But we're not, because it isn't.