TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Two-Time IMO Gold Medalist Becomes President of Romania

28 pointsby nucatus3 days ago

2 comments

laborcontract3 days ago
Link to underlying link rather than to the quote-tweet spam:<p><a href="https:&#x2F;&#x2F;xcancel.com&#x2F;ruxandrateslo&#x2F;status&#x2F;1924206417000403328" rel="nofollow">https:&#x2F;&#x2F;xcancel.com&#x2F;ruxandrateslo&#x2F;status&#x2F;1924206417000403328</a><p><pre><code> &gt; @RuxandraTeslo: “I hadn&#x27;t realized this but Romania&#x27;s next president was 1st in the world in the International Maths Olympiad 2 years in a row with maximum score” </code></pre> His name is Nicușor Dan. He was first in 1987 and 1988. <a href="https:&#x2F;&#x2F;wikipedia.org&#x2F;wiki&#x2F;Nicu%C8%99or_Dan" rel="nofollow">https:&#x2F;&#x2F;wikipedia.org&#x2F;wiki&#x2F;Nicu%C8%99or_Dan</a>
gniv3 days ago
If you like geometry I recommend problem 2 from that 1987 IMO. Simple formulation, elegant solution. Hard, but not crazy hard imo.<p>&quot;In an acute-angled triangle ABC the interior bisector of the angle A intersects BC at L and intersects the circumcircle of ABC again at N. From point L perpendiculars are drawn to AB and AC, the feet of these perpendiculars being K and M respectively. Prove that the quadrilateral AKNM and the triangle ABC have equal areas.&quot;
评论 #44050123 未加载