> Linear algebra gives you mini-spreadsheets for your math equations.<p>Okay, that lets you visualize it (in the finite case) but it's a terrible way to sell it. Spreadsheets are booooring. Did you know that functions are vectors? Okay, better. Did you know that quantum mechanics is all about linear algebra? Okay, sold!<p>1. Almost any time you work in more than one dimension you will want linear algebra in your toolbox. There are a zillion methods for solving (non-linear) equations out there, and in more than one dimension, they use linear algebra. Newton's method? Incredibly useful in practice due (quadratic convergence rocks!), and with some linear algebra sauce BOOM you have Newton's method in as many dimensions as you can sneeze at.<p>2. Oh, by the way... did you know that the Fourier transform is linear?<p>3. Back to quantum mechanics... there's a thing you can do with a linear operator (a matrix is a kind of linear operator) where you get the "spectrum" of the linear operator. It's useful for making sense of big matrices. But in QM, the wavefunctions for electrons are described as eigenfunctions of a linear operator, and taking the "spectrum" of the linear operator gives you the actual spectrum of light that the chemical under study emits. Hence the name, "spectral theorem". It may be linear algebra on paper, but it's laser beams and semiconductors in the real world.<p>4. Oh hey, want to learn about infinite-dimensional vector spaces? Maybe some other time..<p>5. It's hella useful for modeling. Any model is wrong, but Markov processes are useful. Say you run an agency that rents out moving vans, and you have facilities in 30 cities. Vans rented in city A have a 10% chance of being dropped off in city B, 7% in city C, 9.2% in city D, etc. At this rate, how long till you run out of vans in city F? It's a differential equations problem with like 30 different equations! Or you could rewrite it as a single equation with matrices. You'll end up with weird things like 'e^(A*t)' where A is a matrix, and you thought "no way I can exponentiate to the power of a matrix" but spectral decomposition is like "yes way!" and you can solve the equation by diagonalization. Radical! (Basically, linear algebra rescues differential equations from the pits of intractability. I'm using rental vans as an example, but it could be a chemical reaction or a nuclear reaction or a million subway riders or whatever you want.)<p>So the question is:<p>Do you find economics, quantum physics, chemistry, engineering, classical mechanics, machine learning, statistics, etc. useful?<p>Then get some linear algebra in you!