TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

An enormous theorem: The classification of finite simple groups

71 pointsby msvanover 11 years ago

7 comments

moominover 11 years ago
A mathematician friend of mine once tried to explain some stuff about his field. It started with homomorphisms on Riemann surfaces and then got well beyond my comprehension. Anyway, after he&#x27;d been talking for about five minutes he said:<p>&quot;And this has the cardinality of the monster, and no-one knows why.&quot;<p>Mathematicians keep finding peculiar and deep relationships between their subfields that, for the most part, are not yet understood. As the article states, a proof isn&#x27;t really complete until it&#x27;s comprehensible.
kartikkumarover 11 years ago
Blows my mind that the proof shows something as tangible as 18 types + all the sporadics. Since I have absolutely no insight into the field, does anyone know if the 18 is special in any sense?<p>The difference to me between physics and maths is that the latter has the capacity to be fully deducible from the axioms, and in that sense, it&#x27;s fascinating that somewhere buried in our system of numbers, groups, geometry etc. lies a set of characteristics dictating the existence of those 18 types.
评论 #6625813 未加载
bederover 11 years ago
This is an incredibly interesting area of mathematics, and it&#x27;s disappointing that it&#x27;s dying out. When I was an undergrad, I wanted to go into this field, but I was dissuaded by my advisor because of the direction it was going (fewer active researchers means fewer PhD positions, and ultimately, fewer academic jobs).<p>I&#x27;m glad that there&#x27;s an effort to consolidate and simplify the proof, since as they say, it could end up effectively lost forever.
评论 #6624792 未加载
Strilancover 11 years ago
Computer proofs of the classification of finite simple groups are also being worked on.<p>Well, parts of it at least [1].<p>1: <a href="http://research.microsoft.com/en-us/news/features/gonthierproof-101112.aspx" rel="nofollow">http:&#x2F;&#x2F;research.microsoft.com&#x2F;en-us&#x2F;news&#x2F;features&#x2F;gonthierpr...</a>
CurtMonashover 11 years ago
Glad to see a shout-out for Ronald Solomon. His group theory course was probably my favorite math class. That&#x27;s more about the material than him; we just worked our way through the first part of Rotman. But he sure didn&#x27;t do anything to wreck it.<p>E.g., there was the time before class started that for some reason I went to board and led the team in classifying finite groups up to order 60. He just paused at the door when he saw that, smiled, and didn&#x27;t start class until we were done.<p>(Note: The reason that could be done in a few minutes is that for the purposes of the exercise, prime numbers are trivial, and so are integers that are the product of two distinct primes. That didn&#x27;t leave a lot of other cases to worry about.)
gamegoblinover 11 years ago
<p><pre><code> The second advantage is power: if you have proved something about regular polyhedra, then what you have proved automatically holds true for every polyhedron, whether it&#x27;s a cube, a tetrahedron, or some polyhedron that you have never even heard about. </code></pre> Is this worded correctly&#x2F;true? If I prove something is true for regular polyhedra, then I don&#x27;t believe that that extends to all polyhedra since regular polyhedra are a subset of all polyhedra...
评论 #6624892 未加载
arsover 11 years ago
Are finite simple groups specifically about polyhedra, or was that just used as an example?
评论 #6626258 未加载