TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Non-transitive Grime Dice, via Mathematica

28 pointsby latkinover 10 years ago

2 comments

dj-wonkover 10 years ago
Here is what may surprise some people. Here is an expectation table (i.e. just averages):<p><pre><code> | :olive | :magenta | :blue | :yellow | :red | |--------+----------+-------+---------+-------| | 4.167 | 4.333 | 4.5 | 4.667 | 4.833 | </code></pre> Generated by this Clojure code (`exp` means expectation):<p><pre><code> (print-table (order-keys-by exp dice) [(exp dice)]) </code></pre> I&#x27;m surprised that the two (very good!) articles ([1] and [2]) I&#x27;ve read did not point that the non-transitive property [3] holds on the dice even though the expectation are transitive:<p><pre><code> E(olive) &lt; E(magenta) &lt; E(blue) &lt; E(yellow) &lt; E(red) </code></pre> Of course the expectations have to be transitive; they are scalars.<p>When you apply a function to pairs (e.g. compare one die against another), you can get non-transitive behavior. This is not earth-shattering, but it is interesting.<p>Put another way: this is yet another reason to not trust a single summary statistic (e.g. the average in this case) when you really should look at the distribution.<p>My code is here: <a href="https://gist.github.com/xpe/30ae93b107c91ec2ccf5" rel="nofollow">https:&#x2F;&#x2F;gist.github.com&#x2F;xpe&#x2F;30ae93b107c91ec2ccf5</a><p>(Edited at 12:57 PM EST.)<p>[1] OP: <a href="http://latkin.org/blog/2015/01/16/non-transitive-grime-dice-via-mathematica/" rel="nofollow">http:&#x2F;&#x2F;latkin.org&#x2F;blog&#x2F;2015&#x2F;01&#x2F;16&#x2F;non-transitive-grime-dice-...</a><p>[2] <a href="http://www.singingbanana.com/dice/article.htm" rel="nofollow">http:&#x2F;&#x2F;www.singingbanana.com&#x2F;dice&#x2F;article.htm</a><p>[3] Actually, there are multiple cycles; the &#x27;secondary&#x27; cycles are not as &#x27;strong&#x27;.
superobserverover 10 years ago
Not non-intuitive at all. Reminds me of Rock-paper-scissors-lizard-Spock but in dice form.
评论 #8900416 未加载