TE
TechEcho
Home24h TopNewestBestAskShowJobs
GitHubTwitter
Home

TechEcho

A tech news platform built with Next.js, providing global tech news and discussions.

GitHubTwitter

Home

HomeNewestBestAskShowJobs

Resources

HackerNews APIOriginal HackerNewsNext.js

© 2025 TechEcho. All rights reserved.

Ask HN: What are some good Machine Learning resources?

17 pointsby yedhukrishnanabout 10 years ago
I&#x27;m currently learning and researching more in the field of Machine Learning. I started with Machine Learning course in Coursera (http:&#x2F;&#x2F;ml-class.org&#x2F;).<p>Any other&#x2F;more suggestions to go deep into the topic?

6 comments

anacletoabout 10 years ago
Some great resources just mentioned here.<p>If you&#x27;re interested in Machine Learning and Cloud then you should definitely try AWS ML and Azure ML.<p>&quot;Amazon Machine Learning is a service that makes it easy for developers of all skill levels to use machine learning technology.”<p>&quot;Azure Machine Learning: a cloud-based predictive analytics service.&quot;<p>Here two great tutorials (with code) on Amazon ML and Azure ML.<p>Amazon Machine Learning: use cases and a real example in Python <a href="http:&#x2F;&#x2F;cloudacademy.com&#x2F;blog&#x2F;aws-machine-learning&#x2F;" rel="nofollow">http:&#x2F;&#x2F;cloudacademy.com&#x2F;blog&#x2F;aws-machine-learning&#x2F;</a><p>Azure Machine Learning: simplified predictive analytics <a href="http:&#x2F;&#x2F;cloudacademy.com&#x2F;blog&#x2F;azure-machine-learning&#x2F;" rel="nofollow">http:&#x2F;&#x2F;cloudacademy.com&#x2F;blog&#x2F;azure-machine-learning&#x2F;</a>
评论 #9530610 未加载
adorableabout 10 years ago
For a weekly collection of ML related news and resources, you may want to look at <a href="https:&#x2F;&#x2F;aiweekly.curated.co" rel="nofollow">https:&#x2F;&#x2F;aiweekly.curated.co</a>
评论 #9530613 未加载
mark_l_watsonabout 10 years ago
I would concentrate on just Andrew Ng&#x27;s course until you finished it. Even though the problem sets are solved using Matlab&#x2F;Octave you will learn just about all the theory you need to later try different frameworks written in different languages. I earned a 99.6% grade in that class (I have a few decades of AI experience, so I took the class as an excellent review) and I feel that every minute spent on this class was worthwhile.
评论 #9532304 未加载
tacticiankeralaabout 10 years ago
Checkout, <a href="https:&#x2F;&#x2F;github.com&#x2F;josephmisiti&#x2F;awesome-machine-learning" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;josephmisiti&#x2F;awesome-machine-learning</a><p>This is not exactly resources for learning machine learning but frameworks you can use with your favorite programming language.
评论 #9530889 未加载
rayalezabout 10 years ago
Here&#x27;s my list of suggestions:<p><a href="http:&#x2F;&#x2F;digitalmind.io&#x2F;post&#x2F;deep-learning" rel="nofollow">http:&#x2F;&#x2F;digitalmind.io&#x2F;post&#x2F;deep-learning</a>
评论 #9536368 未加载
shogunmikeabout 10 years ago
Some good books on Machine Learning:<p>Machine Learning: The Art and Science of Algorithms that Make Sense of Data (Flach): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Machine-Learning-Science-Algorithms-Sense&#x2F;dp&#x2F;1107422221&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Machine-Learning-Science-Algorithms-Se...</a><p>Machine Learning: A Probabilistic Perspective (Murphy): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Machine-Learning-Probabilistic-Perspective-Computation&#x2F;dp&#x2F;0262018020&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Machine-Learning-Probabilistic-Perspec...</a><p>Pattern Recognition and Machine Learning (Bishop): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Pattern-Recognition-Learning-Information-Statistics&#x2F;dp&#x2F;0387310738&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Pattern-Recognition-Learning-Informati...</a><p>There are some great resources&#x2F;books for Bayesian statistics and graphical models. I&#x27;ve listed them in (approximate) order of increasing difficulty&#x2F;mathematical complexity:<p>Think Bayes (Downey): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Think-Bayes-Allen-B-Downey&#x2F;dp&#x2F;1449370780&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Think-Bayes-Allen-B-Downey&#x2F;dp&#x2F;14493707...</a><p>Bayesian Methods for Hackers (Davidson-Pilon et al): <a href="https:&#x2F;&#x2F;github.com&#x2F;CamDavidsonPilon&#x2F;Probabilistic-Programming-and-Bayesian-Methods-for-Hackers" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;CamDavidsonPilon&#x2F;Probabilistic-Programmin...</a><p>Doing Bayesian Data Analysis (Kruschke), aka &quot;the puppy book&quot;: <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Doing-Bayesian-Data-Analysis-Second&#x2F;dp&#x2F;0124058884&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Doing-Bayesian-Data-Analysis-Second&#x2F;dp...</a><p>Bayesian Data Analysis (Gellman): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Bayesian-Analysis-Chapman-Statistical-Science&#x2F;dp&#x2F;1439840954&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Bayesian-Analysis-Chapman-Statistical-...</a><p>Bayesian Reasoning and Machine Learning (Barber): <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Bayesian-Reasoning-Machine-Learning-Barber&#x2F;dp&#x2F;0521518148&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Bayesian-Reasoning-Machine-Learning-Ba...</a><p>Probabilistic Graphical Models (Koller et al): <a href="https:&#x2F;&#x2F;www.coursera.org&#x2F;course&#x2F;pgm" rel="nofollow">https:&#x2F;&#x2F;www.coursera.org&#x2F;course&#x2F;pgm</a> <a href="http:&#x2F;&#x2F;www.amazon.com&#x2F;Probabilistic-Graphical-Models-Principles-Computation&#x2F;dp&#x2F;0262013193&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.amazon.com&#x2F;Probabilistic-Graphical-Models-Princip...</a><p>If you want a more mathematical&#x2F;statistical take on Machine Learning, then the two books by Hastie&#x2F;Tibshirani et al are definitely worth a read (plus, they&#x27;re free to download from the authors&#x27; websites!):<p>Introduction to Statistical Learning: <a href="http:&#x2F;&#x2F;www-bcf.usc.edu&#x2F;~gareth&#x2F;ISL&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www-bcf.usc.edu&#x2F;~gareth&#x2F;ISL&#x2F;</a><p>The Elements of Statistical Learning: <a href="http:&#x2F;&#x2F;statweb.stanford.edu&#x2F;~tibs&#x2F;ElemStatLearn&#x2F;" rel="nofollow">http:&#x2F;&#x2F;statweb.stanford.edu&#x2F;~tibs&#x2F;ElemStatLearn&#x2F;</a><p>Obviously there is the whole field of &quot;deep learning&quot; as well! A good place to start is with: <a href="http:&#x2F;&#x2F;deeplearning.net&#x2F;" rel="nofollow">http:&#x2F;&#x2F;deeplearning.net&#x2F;</a>
评论 #9530524 未加载
评论 #9530619 未加载