TE
テックエコー
ホーム24時間トップ最新ベスト質問ショー求人
GitHubTwitter
ホーム

テックエコー

Next.jsで構築されたテクノロジーニュースプラットフォームで、グローバルなテクノロジーニュースとディスカッションを提供します。

GitHubTwitter

ホーム

ホーム最新ベスト質問ショー求人

リソース

HackerNews APIオリジナルHackerNewsNext.js

© 2025 テックエコー. すべての権利を保有。

LLM-D: Kubernetes-Native Distributed Inference

119 ポイント投稿者: smarterclayton5日前

4 comments

rdli5日前
This is really interesting. For SOTA inference systems, I&#x27;ve seen two general approaches:<p>* The &quot;stack-centric&quot; approach such as vLLM production stack, AIBrix, etc. These set up an entire inference stack for you including KV cache, routing, etc.<p>* The &quot;pipeline-centric&quot; approach such as NVidia Dynamo, Ray, BentoML. These give you more of an SDK so you can define inference pipelines that you can then deploy on your specific hardware.<p>It seems like LLM-d is the former. Is that right? What prompted you to go down that direction, instead of the direction of Dynamo?
评论 #44043182 未加载
Kemschumam4日前
What would be the benefit of this project over hosting VLLM in Ray?
dzr00015日前
I did a quick scan of the repo and didn&#x27;t see any reference to Ray. Would this indicate that llm-d lacks support for pipeline parallelism?
评论 #44043121 未加载
评论 #44043088 未加载
anttiharju5日前
I wonder if this is preferable to kServe
评论 #44042496 未加载