TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

UCI Machine Learning Repository

69 点作者 Jasamba超过 9 年前

6 条评论

rodionos超过 9 年前
That&#x27;s great. I&#x27;m glad to see most recent datasets have a time series classification. Should be good for time-series databases domain. At the end, it comes down to what questions you want answered with available data. Take this one for example.<p><a href="http:&#x2F;&#x2F;archive.ics.uci.edu&#x2F;ml&#x2F;datasets&#x2F;ElectricityLoadDiagrams20112014" rel="nofollow">http:&#x2F;&#x2F;archive.ics.uci.edu&#x2F;ml&#x2F;datasets&#x2F;ElectricityLoadDiagra...</a><p>I know that the Bay Area police used to analyze power load curves to figure out people growing weed :)
评论 #10924320 未加载
mholt超过 9 年前
Ah yes, this is the classic go-to place for machine learning data sets. I implemented my first ML models using these files, especially the famous iris data set[1] which is a good one for beginners. It was so exciting to see my first multi-layer perceptron working (and to compare its results to the simple perceptron or decision tree, etc, on the same data).<p>[1]: <a href="http:&#x2F;&#x2F;archive.ics.uci.edu&#x2F;ml&#x2F;datasets&#x2F;Iris" rel="nofollow">http:&#x2F;&#x2F;archive.ics.uci.edu&#x2F;ml&#x2F;datasets&#x2F;Iris</a>
评论 #10924339 未加载
dopeboy超过 9 年前
Proud to see my alma mater on HN. Zot zot!
评论 #10923157 未加载
评论 #10923443 未加载
评论 #10923272 未加载
secondtimeuse超过 9 年前
UCI-ML The classical source for dataset selection papers.<p>For reference<p><a href="http:&#x2F;&#x2F;web.archive.org&#x2F;web&#x2F;20061109231206&#x2F;http:&#x2F;&#x2F;www.jmlg.org&#x2F;guides&#x2F;perform_experiments.htm" rel="nofollow">http:&#x2F;&#x2F;web.archive.org&#x2F;web&#x2F;20061109231206&#x2F;http:&#x2F;&#x2F;www.jmlg.or...</a>
评论 #10923465 未加载
评论 #10924355 未加载
IndianAstronaut超过 9 年前
I love this so much. This is how I got my first intro to ML. I picked out the income data set andto my pleasant surprise, I got high predictive accuracy from a decision tree model in R. Gave me lots of confidence to try it out on other data sets.
stared超过 9 年前
A wonderful thing, I used it for a number of workshops in ML.