TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Combining topology and quantum computing = huge analysis of data sets

2 点作者 quackerhacker超过 9 年前

1 comment

GFK_of_xmaspast超过 9 年前
The actual abstract from <a href="http:&#x2F;&#x2F;www.nature.com&#x2F;ncomms&#x2F;2016&#x2F;160125&#x2F;ncomms10138&#x2F;abs&#x2F;ncomms10138.html" rel="nofollow">http:&#x2F;&#x2F;www.nature.com&#x2F;ncomms&#x2F;2016&#x2F;160125&#x2F;ncomms10138&#x2F;abs&#x2F;nco...</a>: &quot;Extracting useful information from large data sets can be a daunting task. Topological methods for analysing data sets provide a powerful technique for extracting such information. Persistent homology is a sophisticated tool for identifying topological features and for determining how such features persist as the data is viewed at different scales. Here we present quantum machine learning algorithms for calculating Betti numbers—the numbers of connected components, holes and voids—in persistent homology, and for finding eigenvectors and eigenvalues of the combinatorial Laplacian. The algorithms provide an exponential speed-up over the best currently known classical algorithms for topological data analysis.&quot;<p>Arxiv version here: <a href="http:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;1408.3106" rel="nofollow">http:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;1408.3106</a>