TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Bayesian Optimization for Collaborative Filtering with MLlib

42 点作者 Zephyr314将近 9 年前

9 条评论

minimaxir将近 9 年前
Wait, Spark has built-in Model Hyperparameter selection (<a href="http:&#x2F;&#x2F;spark.apache.org&#x2F;docs&#x2F;latest&#x2F;ml-tuning.html" rel="nofollow">http:&#x2F;&#x2F;spark.apache.org&#x2F;docs&#x2F;latest&#x2F;ml-tuning.html</a>), that was not mentioned in the article. What advantages does your service do?<p>Relatedly, why are you advocating using MLLib&#x2F;RDDs when they have been deprecated in favor of ML&#x2F;DataFrames (<a href="http:&#x2F;&#x2F;spark.apache.org&#x2F;docs&#x2F;latest&#x2F;ml-guide.html" rel="nofollow">http:&#x2F;&#x2F;spark.apache.org&#x2F;docs&#x2F;latest&#x2F;ml-guide.html</a>)?
评论 #12258708 未加载
评论 #12257779 未加载
评论 #12258394 未加载
apathy将近 9 年前
I could give a shit about the hyperparameter tuning (CV... it Works For Me) but your writeup of Gaussian processes and why they are called kriging in spatial stats is awesome.<p><a href="http:&#x2F;&#x2F;blog.sigopt.com&#x2F;post&#x2F;130275376068&#x2F;sigopt-fundamentals-intuition-behind-gaussian" rel="nofollow">http:&#x2F;&#x2F;blog.sigopt.com&#x2F;post&#x2F;130275376068&#x2F;sigopt-fundamentals...</a>
评论 #12264238 未加载
a1k0n将近 9 年前
So SigOpt was tuning rank (number of latent factors), number of iterations to run the algorithm (in my experience alternating least squares generally converges within 10-20 iterations, but there&#x27;d be no downside to running it longer unless it&#x27;s overfitting), and the regularization strength.<p>What optimal parameters did it find for these?
评论 #12258099 未加载
Zephyr314将近 9 年前
I&#x27;m one of the co-founders of SigOpt (YC W15) and am happy to answer any questions about this post (or anything about SigOpt).<p>More info on the methods behind SigOpt can be found at <a href="https:&#x2F;&#x2F;sigopt.com&#x2F;research" rel="nofollow">https:&#x2F;&#x2F;sigopt.com&#x2F;research</a>.
apathy将近 9 年前
Oh, also, for students: <a href="https:&#x2F;&#x2F;sigopt.com&#x2F;edu" rel="nofollow">https:&#x2F;&#x2F;sigopt.com&#x2F;edu</a><p>I&#x27;m worried this is going to be like good Scotch for me.
blahi将近 9 年前
There is package, mlrMBO, created by the great guys who created mlr (absolutely awesome for building pipelines, you will ditch caret in a second!). Not on Spark obviously, but thought some might find it useful.<p><a href="https:&#x2F;&#x2F;github.com&#x2F;mlr-org&#x2F;mlrMBO" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;mlr-org&#x2F;mlrMBO</a>
tachim将近 9 年前
How does SigOpt compare to GPs?
评论 #12258343 未加载
visarga将近 9 年前
<a href="https:&#x2F;&#x2F;sigopt.com&#x2F;pricing" rel="nofollow">https:&#x2F;&#x2F;sigopt.com&#x2F;pricing</a><p>- Individual: $1,000&#x2F;month<p>- Enterprise: Custom pricing<p>I am not a multi-million $ company, so I guess it&#x27;s useless for me.
评论 #12263106 未加载
idewanck将近 9 年前
Post author here, happy to answer any questions as well.