"our only hope for long-lived smart sensors is driving down the energy used by local compute to the point at which harvesting gives enough power to run useful applications. The good news is that existing hardware like DSPs can perform a multiply-add for just low double-digit picojoules, and can access local SRAM to avoid the costs of DRAM. If you do the back of the envelope calculations, a small image network like Inception V1 takes about 1.5 billion multiply-adds, so 20 picojoules * 1.5 billion gives a rough energy cost of 30 millijoules per prediction (or 30 milliwatts at 1 prediction per second). This is already an order of magnitude less energy than the equivalent work done on a general-purpose CPU, so it’s a good proof that it’s possible to dramatically reduce computational costs, even though it’s still too high for energy harvesting to work."