TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

The Amazing Power of Word Vectors (2016)

127 点作者 SamuelKillin大约 8 年前

6 条评论

iconvalleysil大约 8 年前
More interesting information from a DOD research lab that resulted in vectors <a href="https:&#x2F;&#x2F;www.kaggle.com&#x2F;c&#x2F;word2vec-nlp-tutorial&#x2F;discussion&#x2F;12349" rel="nofollow">https:&#x2F;&#x2F;www.kaggle.com&#x2F;c&#x2F;word2vec-nlp-tutorial&#x2F;discussion&#x2F;12...</a>
评论 #13782448 未加载
j_s大约 8 年前
Recently HN featured a podcast interview with &quot;one of the creators of Word2Vec and fastText&quot;, documenting some of his professional history.<p><a href="https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=13630678" rel="nofollow">https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=13630678</a>
Bioeye大约 8 年前
This is an awesome explanation of those papers! Does anyone have any cool examples of word2vec being used in a project? I&#x27;d be interested in seeing what people could make with it.
评论 #13782438 未加载
ideonexus大约 8 年前
For anyone looking for a simple javascript explorable explanation of this you can quickly download and run in a browser, I just found the following GitHub Project.<p>Demo:<p><a href="http:&#x2F;&#x2F;turbomaze.github.io&#x2F;word2vecjson&#x2F;" rel="nofollow">http:&#x2F;&#x2F;turbomaze.github.io&#x2F;word2vecjson&#x2F;</a><p>Code:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;turbomaze&#x2F;word2vecjson" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;turbomaze&#x2F;word2vecjson</a><p>The code looks pretty straightforward so I look forward to exploring this playground of a new and fascinating concept.
评论 #13783610 未加载
vonnik大约 8 年前
Word vectors are great. We&#x27;ve also written about them at length.[0] But any one interested in word vectors should also be looking at newer ways of applying neural nets to text. Specifically, convolutional nets with pooling for time are producing great results for clustering and classification.<p>[0] <a href="https:&#x2F;&#x2F;deeplearning4j.org&#x2F;&#x2F;word2vec" rel="nofollow">https:&#x2F;&#x2F;deeplearning4j.org&#x2F;&#x2F;word2vec</a>
mustafabisic1大约 8 年前
You nailed it with the &quot;German + airlines&quot; example. Up until that point it was tough to read for a newbie like me. Great blog post