TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

An Introduction to Probabilistic Graphical Models (2003) [pdf]

214 点作者 scvalencia大约 8 年前

12 条评论

diab0lic大约 8 年前
A few comments have mentioned neural nets in this post. adamnemecek mentions in this thread that PGMs are a superset of neural networks, and and Thomas Wiecki has a few excellent blog posts on creating bayesian neural networks using pymc3.[0][1][2] If you&#x27;re curious about how these two concepts can be brought together I highly recommend reading through these three posts.<p>[0] <a href="http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2016&#x2F;06&#x2F;01&#x2F;bayesian-deep-learning&#x2F;" rel="nofollow">http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2016&#x2F;06&#x2F;01&#x2F;bayesian-deep-learn...</a><p>[1] <a href="http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2016&#x2F;07&#x2F;05&#x2F;bayesian-deep-learning&#x2F;" rel="nofollow">http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2016&#x2F;07&#x2F;05&#x2F;bayesian-deep-learn...</a><p>[2] <a href="http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2017&#x2F;03&#x2F;14&#x2F;random-walk-deep-net&#x2F;" rel="nofollow">http:&#x2F;&#x2F;twiecki.github.io&#x2F;blog&#x2F;2017&#x2F;03&#x2F;14&#x2F;random-walk-deep-ne...</a>
评论 #13983746 未加载
platz大约 8 年前
PGM&#x27;s are great, but my experience from Koller&#x27;s course is that it is very hard to identify cases where they can be used.<p>Part of the reason is that you need a-priori knowledge of the causal relationships (coarse grained I.e direction) between your variables.<p>Presumably if you&#x27;re doing ML you don&#x27;t know those causal relationships to begin with.<p>Particularly good fits are things like physics where laws are known.
评论 #13983395 未加载
评论 #13983925 未加载
tachim大约 8 年前
This is the best textbook on graphical models, also from Jordan but later (2008): <a href="https:&#x2F;&#x2F;people.eecs.berkeley.edu&#x2F;~wainwrig&#x2F;Papers&#x2F;WaiJor08_FTML.pdf" rel="nofollow">https:&#x2F;&#x2F;people.eecs.berkeley.edu&#x2F;~wainwrig&#x2F;Papers&#x2F;WaiJor08_F...</a>. It also covers some general theory of variational inference. Source: I worked on PGMs in grad school.
JustFinishedBSG大约 8 年前
This course also referred M.I Jordan book: <a href="http:&#x2F;&#x2F;imagine.enpc.fr&#x2F;~obozinsg&#x2F;teaching&#x2F;mva_gm&#x2F;fall2016&#x2F;" rel="nofollow">http:&#x2F;&#x2F;imagine.enpc.fr&#x2F;~obozinsg&#x2F;teaching&#x2F;mva_gm&#x2F;fall2016&#x2F;</a><p>One of the best course I have ever taken, F. Bach and G. Obozinski are incredible teachers.
评论 #13985964 未加载
BucketSort大约 8 年前
There&#x27;s an excellent course on PGM by Koller on Coursera. My friend took it and now he&#x27;s a PGM evangelist. If you are wondering where PGM lies in the spectrum of machine learning, you should research the difference between generative and discriminate modeling. We have been driven to PGM to solve our ML problem that was hard to frame as A NN. Mainly because we had some priors we needed to encode to make the problem tractable. It reminds me a little of heuristics in search.<p>The person I&#x27;m talking to: an early ML student.
评论 #13984026 未加载
KasianFranks大约 8 年前
Good article: &quot;Big-data boondoggles and brain-inspired chips are just two of the things we’re really getting wrong&quot; - Michael I. Jordan ref: <a href="http:&#x2F;&#x2F;spectrum.ieee.org&#x2F;robotics&#x2F;artificial-intelligence&#x2F;machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts" rel="nofollow">http:&#x2F;&#x2F;spectrum.ieee.org&#x2F;robotics&#x2F;artificial-intelligence&#x2F;ma...</a>
visarga大约 8 年前
PGM seems to me harder than neural nets, but the trend in the last couple of years is to include probabilities in neural nets, so they&#x27;re hot.
评论 #13983137 未加载
评论 #13983124 未加载
MrQuincle大约 8 年前
From: <a href="http:&#x2F;&#x2F;spectrum.ieee.org&#x2F;robotics&#x2F;artificial-intelligence&#x2F;machinelearning-maestro-michael-jordan-on-the-delusions-of-big-data-and-other-huge-engineering-efforts" rel="nofollow">http:&#x2F;&#x2F;spectrum.ieee.org&#x2F;robotics&#x2F;artificial-intelligence&#x2F;ma...</a><p>Jordan: Well, humans are able to deal with cluttered scenes. They are able to deal with huge numbers of categories. They can deal with inferences about the scene: “What if I sit down on that?” “What if I put something on top of something?” These are far beyond the capability of today’s machines. Deep learning is good at certain kinds of image classification. “What object is in this scene?”<p>I think Jordan refers here to Bayesian models that incorporate gravity, occlusion, and other such concepts.<p><a href="http:&#x2F;&#x2F;www.cv-foundation.org&#x2F;openaccess&#x2F;content_cvpr_2013&#x2F;html&#x2F;Jiang_Hallucinated_Humans_as_2013_CVPR_paper.html" rel="nofollow">http:&#x2F;&#x2F;www.cv-foundation.org&#x2F;openaccess&#x2F;content_cvpr_2013&#x2F;ht...</a> e.g. postulates entire humans to improve scene understanding.<p>What I get out of this: Deep learning has to be enriched with progress from other machine learning fields
leecarraher大约 8 年前
Nice high level talk on Statistical Inference for Big Data by Jordan. Been one of my favorites since his LDA&#x2F;PLSA papers in 2003 with Andrew NG. <a href="http:&#x2F;&#x2F;videolectures.net&#x2F;colt2014_jordan_bigdata&#x2F;?q=jordan" rel="nofollow">http:&#x2F;&#x2F;videolectures.net&#x2F;colt2014_jordan_bigdata&#x2F;?q=jordan</a>
Chris2048大约 8 年前
Related?:<p><a href="https:&#x2F;&#x2F;www.coursera.org&#x2F;specializations&#x2F;probabilistic-graphical-models" rel="nofollow">https:&#x2F;&#x2F;www.coursera.org&#x2F;specializations&#x2F;probabilistic-graph...</a><p><a href="http:&#x2F;&#x2F;openclassroom.stanford.edu&#x2F;MainFolder&#x2F;CoursePage.php?course=ProbabilisticGraphicalModels" rel="nofollow">http:&#x2F;&#x2F;openclassroom.stanford.edu&#x2F;MainFolder&#x2F;CoursePage.php?...</a>
shurtler大约 8 年前
Note there&#x27;s an exploding literature that reads these models as causal models: <a href="http:&#x2F;&#x2F;ftp.cs.ucla.edu&#x2F;pub&#x2F;stat_ser&#x2F;r350.pdf" rel="nofollow">http:&#x2F;&#x2F;ftp.cs.ucla.edu&#x2F;pub&#x2F;stat_ser&#x2F;r350.pdf</a>
iconvalleysil大约 8 年前
Michael I. Jordan was a mentor to Andrew Ng. Probabilistic Graphical Models are the next frontier in AI after deep learning.