TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Over 150 new families of Newtonian periodic planar three-body orbits

89 点作者 msuvakov大约 8 年前

11 条评论

GregBuchholz大约 8 年前
Has anyone explored the computational nature of Newtonian gravity? That is, if you carefully setup a set of masses in some manner, and let them interact though their gravitational pull, what kinds of things can you compute? Is gravity Turing complete? Is it a push down automata? Finite state machine? Can you use choreographies like these, coupled together to create register machines, or simulate cellular automata?
评论 #14281085 未加载
评论 #14282476 未加载
评论 #14281505 未加载
评论 #14281955 未加载
评论 #14280733 未加载
kmill大约 8 年前
This paper seems to be missing some related work, for instance Carles Simó.<p>Greg Minton created a computer-assisted proof system for showing that there must exist a choreography with parameters within a certain distance of some given approximate parameters. This isn&#x27;t just a matter of more floating point precision; it certifies that there is a critical point for action of the right kind. <a href="http:&#x2F;&#x2F;gminton.org&#x2F;#gravity" rel="nofollow">http:&#x2F;&#x2F;gminton.org&#x2F;#gravity</a> and <a href="http:&#x2F;&#x2F;gminton.org&#x2F;#cap" rel="nofollow">http:&#x2F;&#x2F;gminton.org&#x2F;#cap</a><p>Greg Minton also has a bunch of proved choreographies at <a href="http:&#x2F;&#x2F;gminton.org&#x2F;#choreo" rel="nofollow">http:&#x2F;&#x2F;gminton.org&#x2F;#choreo</a>
评论 #14281740 未加载
GregBuchholz大约 8 年前
Here&#x27;s an older visualization for other interesting planar n-body choreographies:<p><a href="http:&#x2F;&#x2F;www.maths.manchester.ac.uk&#x2F;~jm&#x2F;Choreographies&#x2F;" rel="nofollow">http:&#x2F;&#x2F;www.maths.manchester.ac.uk&#x2F;~jm&#x2F;Choreographies&#x2F;</a><p>...plus a link to the animations for the linked paper:<p><a href="http:&#x2F;&#x2F;numericaltank.sjtu.edu.cn&#x2F;three-body&#x2F;three-body.htm" rel="nofollow">http:&#x2F;&#x2F;numericaltank.sjtu.edu.cn&#x2F;three-body&#x2F;three-body.htm</a>
评论 #14280860 未加载
评论 #14281210 未加载
Animats大约 8 年前
How stable are these orbits? Do they tend to degenerate into simpler forms over time? If they&#x27;re stable, do we see any asteroid triplets in such configurations? Why not?
isoprophlex大约 8 年前
Reminds me of Cixin Liu&#x27;s &#x27;Three Body Problem&#x27;, about alien invaders that want to escape their own chaotic three-body planetary system by taking over ours... The first two books of the trilogy are just spectacular science fiction.
musgravepeter大约 8 年前
Guess I have some work to do to update my mobile app Three Body! (It presents galleries of solutions up to those found in 2013, and lets you explore your own initial placements)<p>iOS: <a href="https:&#x2F;&#x2F;itunes.apple.com&#x2F;us&#x2F;app&#x2F;threebody-lite&#x2F;id951920756?mt=8" rel="nofollow">https:&#x2F;&#x2F;itunes.apple.com&#x2F;us&#x2F;app&#x2F;threebody-lite&#x2F;id951920756?m...</a> Android: <a href="https:&#x2F;&#x2F;play.google.com&#x2F;store&#x2F;apps&#x2F;details?id=com.nbodyphysics.threebodylite" rel="nofollow">https:&#x2F;&#x2F;play.google.com&#x2F;store&#x2F;apps&#x2F;details?id=com.nbodyphysi...</a><p>The authors of the new solutions have published all the initial conditions - so hopefully it won&#x27;t be too hard. (Although they use an 8th order RK integrator and the one I have is a regularizing Bulirsch-Stoer integrator).
MichailP大约 8 年前
I wonder how can authors claim such great certainty in their results, after all, it is all based on number crunching. Some floating point error, and similar is bound to creep in...
评论 #14280341 未加载
评论 #14280351 未加载
评论 #14281545 未加载
评论 #14280323 未加载
yorteiler大约 8 年前
What are the implications of this?<p>Until 2013, only 3 or so solutions to the 3-body problem are known. Now we have over 150 solutions. This sounds incredible, given how fundamental the problem is, but So what?<p>Will this change astrophysics - for example - in any way?
评论 #14280439 未加载
评论 #14280538 未加载
macawfish大约 8 年前
It&#x27;d be fascinating to see a harmonic analysis of these orbits. They seem (qualitatively) to exist on some edge of order and chaos.
JoeAltmaier大约 8 年前
Holy cow, some of those are complex. The equations of motion must be arcane.
评论 #14281511 未加载
grw_大约 8 年前
I, for one, welcome our new Trisolarian overlords!
评论 #14280284 未加载
评论 #14280384 未加载