TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Building lattice reduction (LLL) intuition

81 点作者 kkl将近 8 年前

2 条评论

tptacek将近 8 年前
This is probably my favorite crypto blog post of the year. LLL comes up a lot in attacks on asymmetric cryptography.<p>If you&#x27;re interested in crypto or linear algebra but don&#x27;t know what a lattice is, a great starting point is Hoffstein&#x27;s _Introduction to Mathematical Cryptography_:<p><a href="http:&#x2F;&#x2F;citeseerx.ist.psu.edu&#x2F;viewdoc&#x2F;download?doi=10.1.1.182.9999&amp;rep=rep1&amp;type=pdf" rel="nofollow">http:&#x2F;&#x2F;citeseerx.ist.psu.edu&#x2F;viewdoc&#x2F;download?doi=10.1.1.182...</a><p>(If you know what a vector space is, you know what a lattice is; it&#x27;s a vector space where only integers are allowed as coefficients in linear combinations).<p>Here&#x27;s Antoine Joux, one of the world&#x27;s most renowned cryptanalysts, talking about applications of LLL to crypto attacks. Amusingly, he sort of opens by making fun of cryptographers for using LLL without really understanding it:<p><a href="http:&#x2F;&#x2F;citeseerx.ist.psu.edu&#x2F;viewdoc&#x2F;summary?doi=10.1.1.11.7624" rel="nofollow">http:&#x2F;&#x2F;citeseerx.ist.psu.edu&#x2F;viewdoc&#x2F;summary?doi=10.1.1.11.7...</a><p>Here&#x27;s Babai&#x27;s application of LLL to finding close lattice points:<p><a href="http:&#x2F;&#x2F;www.csie.nuk.edu.tw&#x2F;~cychen&#x2F;Lattices&#x2F;On%20lovasz%20lattice%20reduction%20and%20the%20nearest%20lattice%20point%20problem.pdf" rel="nofollow">http:&#x2F;&#x2F;www.csie.nuk.edu.tw&#x2F;~cychen&#x2F;Lattices&#x2F;On%20lovasz%20la...</a><p>From here you&#x27;re a [boneh hidden number problem] Google search away from attacking dlog&#x2F;ecdlog crypto from vulnerabilities like biased nonces.
评论 #14852220 未加载
abetusk将近 8 年前
For context, LLL was used to prove that polynomial factorization can be solved in polynomial time. That is, given r(x) such that:<p><pre><code> r(x) = p(x) * q(x) </code></pre> where the coefficients of each factor are integral:<p><pre><code> p_i, q_i in Z </code></pre> LLL can be used to find p(x) and q(x) only given r(x).<p>There are other problems that LLL solves and there are more modern lattice reduction algorithms (PSLQ, etc.) but LLL was one of the first.
评论 #14851975 未加载