TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Automated Feature Engineering

3 点作者 LrnByTeach超过 7 年前

1 comment

LrnByTeach超过 7 年前
It seems the ability of this tool to extract features from regular enterprise databases will save lots of manual effort<p>Github repo url <a href="https:&#x2F;&#x2F;github.com&#x2F;Featuretools&#x2F;featuretools" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;Featuretools&#x2F;featuretools</a><p>Python notebook for NYC Taxi 1.5 million trips training dataset <a href="https:&#x2F;&#x2F;github.com&#x2F;Featuretools&#x2F;NYC-Taxi-Demo&#x2F;blob&#x2F;master&#x2F;NYC%20Taxi%203%20-%20Simple%20Featuretools.ipynb" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;Featuretools&#x2F;NYC-Taxi-Demo&#x2F;blob&#x2F;master&#x2F;NY...</a><p>How this automated feature extraction compares:<p><pre><code> Received a score of 0.45288 on the Kaggle competition. Placed 685 out of 1257. Beat 45% of competitors on the Kaggle competition. Scored 4% better than the baseline solution Had a modeling RMSLE of 0.40196</code></pre>