TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Vectordash: GPU instances for deep learning

45 点作者 frlnBorg大约 7 年前

3 条评论

jsty大约 7 年前
What&#x27;s your licensing situation with Nvidia regards their prohibition [1] on datacenter deployment for &#x27;consumer&#x27; cards?<p>[1] <a href="https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=16002068" rel="nofollow">https:&#x2F;&#x2F;news.ycombinator.com&#x2F;item?id=16002068</a>
评论 #16947334 未加载
评论 #16947289 未加载
ctlaltdefeat大约 7 年前
If I understand correctly, the instances available are containerized instances that users run (i.e, the system matches hosts to guests and takes a cut).<p>Beyond being dangerous on multiple levels, there doesn&#x27;t seem to be any guarantee of storage or network bandwidth&#x2F;traffic. Having a multi-TFLOP GPU to train with is hardly useful if you can&#x27;t get the training data on the device in a reasonable amount of time, or hold that data in local storage.
评论 #16950967 未加载
jcims大约 7 年前
With more GPU-in-the-cloud offerings coming on line, is there a utility to dump GPU memory to see if your cloud provider has wiped it between customers?
评论 #16950973 未加载