TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

K-anonymity

136 点作者 dedalus将近 7 年前

7 条评论

p4bl0将近 7 年前
A friend is writing a good series of blogposts about formal privacy definitions. The first one was about k-anonymity: <a href="https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;k-anonymity.html" rel="nofollow">https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;k-anonymity.html</a><p>Follow-ups:<p>- k-map: <a href="https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;k-map.html" rel="nofollow">https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;k-map.html</a><p>- l-diversity: <a href="https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;l-diversity.html" rel="nofollow">https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;l-diversity.html</a><p>- δ-presence: <a href="https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;delta-presence.html" rel="nofollow">https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;delta-presence.html</a><p>- differential privacy: <a href="https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;differential-privacy-awesomeness.html" rel="nofollow">https:&#x2F;&#x2F;desfontain.es&#x2F;privacy&#x2F;differential-privacy-awesomene...</a>
ThePhysicist将近 7 年前
We recently gave a workshop on k-anonymity (+l-diversity and t-closeness) and differential privacy, you can find the iPython notebooks and slides here:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;KIProtect&#x2F;data-privacy-for-data-scientists" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;KIProtect&#x2F;data-privacy-for-data-scientist...</a><p>In the workshop we implement the &quot;Mondrian algorithm&quot; to produce a k-anonymous dataset. We then look at the problems of this approach (i.e. missing diversity in the sensitive attribute) and try to fix it using l-diversity (which is also not optimal) and finally t-closeness. The third notebook includes an implementation of a differentially private &quot;randomized response&quot; scheme, showing how it changes the data and how we can take into account the added noise when working with the randomized data.<p>I think it&#x27;s important to keep in mind that k-anonymity and differential privacy are not algorithms but mathematical privacy definitions. To implement them, you need a suitable method like the &quot;Mondrian&quot; algorithm or a randomized response scheme.<p>If you have any questions or suggestions for improvements please open an issue or PR on Github!
manigandham将近 7 年前
A recent common usage is by the <a href="https:&#x2F;&#x2F;haveibeenpwned.com" rel="nofollow">https:&#x2F;&#x2F;haveibeenpwned.com</a> leaked password check database, worked on in part by the Cloudflare team:<p><a href="https:&#x2F;&#x2F;www.troyhunt.com&#x2F;ive-just-launched-pwned-passwords-version-2&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.troyhunt.com&#x2F;ive-just-launched-pwned-passwords-v...</a><p><a href="https:&#x2F;&#x2F;blog.cloudflare.com&#x2F;validating-leaked-passwords-with-k-anonymity&#x2F;" rel="nofollow">https:&#x2F;&#x2F;blog.cloudflare.com&#x2F;validating-leaked-passwords-with...</a>
评论 #17743439 未加载
lambdasquirrel将近 7 年前
If you’re curious about the matter, there’s an alternative technique called differential privacy that adds randomization to the data, and is able to provide guarantees that individual records cannot be identified. k-anonymity is subject to e.g. linkage attacks of the kind that differential privacy seeks to eliminate.
评论 #17743334 未加载
评论 #17743475 未加载
landgenoot将近 7 年前
I brought k-anonymity and l-diversity to nodeJS a couple of weeks ago.<p><a href="https:&#x2F;&#x2F;www.npmjs.com&#x2F;package&#x2F;node-mondrian" rel="nofollow">https:&#x2F;&#x2F;www.npmjs.com&#x2F;package&#x2F;node-mondrian</a>
m0nster将近 7 年前
ARX [1, 2] is an open source software that (among other features) supports most of the methods mentioned in this thread. Full disclosure: I&#x27;m one of the developers of ARX.<p>[1] Website: <a href="http:&#x2F;&#x2F;arx.deidentifier.org" rel="nofollow">http:&#x2F;&#x2F;arx.deidentifier.org</a><p>[2] Source: <a href="https:&#x2F;&#x2F;github.com&#x2F;arx-deidentifier&#x2F;arx" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;arx-deidentifier&#x2F;arx</a>
thruflo22将近 7 年前
We wrote a review of anonymisation methods here: <a href="https:&#x2F;&#x2F;hazy.com&#x2F;files&#x2F;Hazy_Anonymisation_Review_110718.pdf" rel="nofollow">https:&#x2F;&#x2F;hazy.com&#x2F;files&#x2F;Hazy_Anonymisation_Review_110718.pdf</a>