Earth's moon has unstable orbits:<p><a href="https://en.wikipedia.org/wiki/Lunar_orbit#Perturbation_effects" rel="nofollow">https://en.wikipedia.org/wiki/Lunar_orbit#Perturbation_effec...</a><p>Gravitational anomalies slightly distorting the orbits of some Lunar Orbiters led to the discovery of mass concentrations (dubbed mascons) beneath the lunar surface caused by large impacting bodies at some remote time in the past. These anomalies are significant enough to cause a lunar orbit to change significantly over the course of several days.<p>See also:<p><a href="https://science.nasa.gov/science-news/science-at-nasa/2006/06nov_loworbit/" rel="nofollow">https://science.nasa.gov/science-news/science-at-nasa/2006/0...</a><p>Joining an earlier subsatellite PFS-1, released by Apollo 15 astronauts eight months earlier, PFS-2 was to measure charged particles and magnetic fields all around the Moon as the Moon orbited Earth. The orbit of PFS-2 rapidly changed shape and distance from the Moon. In 2-1/2 weeks the satellite was swooping to within a hair-raising 6 miles (10 km) of the lunar surface at closest approach. As the orbit kept changing, PFS-2 backed off again, until it seemed to be a safe 30 miles away. But not for long: inexorably, the subsatellite's orbit carried it back toward the Moon. And on May 29, 1972—only 35 days and 425 orbits after its release—PFS-2 crashed.<p>Be careful of the orbit chosen for a low-orbiting lunar satellite. "What counts is an orbit's inclination," that is, the tilt of its plane to the Moon's equatorial plane. "There are actually a number of 'frozen orbits' where a spacecraft can stay in a low lunar orbit indefinitely. They occur at four inclinations: 27º, 50º, 76º, and 86º"—the last one being nearly over the lunar poles. The orbit of the relatively long-lived Apollo 15 subsatellite PFS-1 had an inclination of 28º, which turned out to be close to the inclination of one of the frozen orbits—but poor PFS-2 was cursed with an inclination of only 11º.<p>edit: added additional information about frozen orbits.