TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

TimescaleDB 1.0 Is Production Ready

47 点作者 ScottWRobinson超过 6 年前

6 条评论

valyala超过 6 年前
TimescaleDB is great for storing time series comparing to vanilla ProstgreSQL!<p>Unfortunately it sometimes looses in storage cost-effectiveness comparing to competing TSDBs - <a href="https:&#x2F;&#x2F;medium.com&#x2F;@valyala&#x2F;when-size-matters-benchmarking-victoriametrics-vs-timescale-and-influxdb-6035811952d4" rel="nofollow">https:&#x2F;&#x2F;medium.com&#x2F;@valyala&#x2F;when-size-matters-benchmarking-v...</a>
msiggy超过 6 年前
I&#x27;m excited to give this database a try if I can find some free time.
sman393超过 6 年前
Can this be used side by side on normal Postgres cluster? As in could I have one DB for app data, and one for metrics data? Considering switching from MySQL (ndb cluster) to running a Postgres cluster and this could be a good motivator.
评论 #18348631 未加载
zip1234超过 6 年前
How fast is it when it has a TB of data? I realize that this is affected by the machine it is running on, but just curious how long those sample queries in the docs would take to run.
评论 #18347260 未加载
评论 #18347555 未加载
dominotw超过 6 年前
I evaluated this heavily but had to backoff because scale is limited to a single machine. Really eager for their clustering solution.
评论 #18346702 未加载
评论 #18349689 未加载
athenot超过 6 年前
It would be nice if they did a quick comparison to InfluxData and other time series databases.
评论 #18346787 未加载