TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Natural Gradient Descent (2018)

98 点作者 ghosthamlet大约 6 年前

3 条评论

carlmcqueen大约 6 年前
Not to spoil the article for anyone but..<p>Pretty in depth article and well laid out explanation of natural gradient descent with a small pre-fit dataset for a conclusion of &#x27;too computationally expensive for machine learning&#x2F;big data world&#x27;.<p>This is what I struggled with in school. You&#x27;d spend a class week learning some tough stuff only to be told &#x27;this is no longer done, better methods are now used.&#x27;<p>Sometimes the work is needed to allow you to understand why&#x2F;how the new method is used, but in many cases I didn&#x27;t find that to be true.
评论 #19430821 未加载
评论 #19433828 未加载
评论 #19432294 未加载
评论 #19435389 未加载
dfan大约 6 年前
<a href="https:&#x2F;&#x2F;towardsdatascience.com&#x2F;its-only-natural-an-excessively-deep-dive-into-natural-gradient-optimization-75d464b89dbb" rel="nofollow">https:&#x2F;&#x2F;towardsdatascience.com&#x2F;its-only-natural-an-excessive...</a> is another nice overview complementary to this one.
xtacy大约 6 年前
This series is well written. The speed up is expected due because you&#x27;re incorporating second-order information during the optimisation. For more insight into second order optimisation methods, take a look at Newton&#x27;s method: <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Newton%27s_method" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Newton%27s_method</a>. The intuition, derivation, and proof of correctness and convergence speed are quite illuminating.
评论 #19432890 未加载