TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

K-Means Clustering: Unsupervised Learning Applied on Magic:The Gathering

57 点作者 strikingloo大约 6 年前

4 条评论

bpicolo大约 6 年前
&gt; I just didn’t want to mix my M:tG findings with this tutorial so that readers who are into Data Science but not into the game won’t be bored.<p>I&#x27;d encourage you to add some examples here, even if they&#x27;re dumbed down. Without that, the article is not telling me what&#x27;s been achieved through the process.
评论 #19560280 未加载
评论 #19579947 未加载
Tarq0n大约 6 年前
Neat idea, but I&#x27;m not sure the approach of using euclidian distance on what&#x27;s essentially a categorical variable is valid. Instead try a different clustering algorithm like K-prototypes [1], or Gower distance instead of euclidian.<p>[1] <a href="https:&#x2F;&#x2F;pdfs.semanticscholar.org&#x2F;d42b&#x2F;b5ad2d03be6d8fefa63d25d02c0711d19728.pdf" rel="nofollow">https:&#x2F;&#x2F;pdfs.semanticscholar.org&#x2F;d42b&#x2F;b5ad2d03be6d8fefa63d25...</a><p>Edit: Thinking about it more, you could treat the cards in each deck as a bag of words and run LDA on it. Alternatively create an embedding (just keep in mind skip-grams aren&#x27;t meaningful for decks of cards) and cluster those.
anthony_doan大约 6 年前
I like the LDA one (<a href="https:&#x2F;&#x2F;towardsdatascience.com&#x2F;finding-magic-the-gathering-archetypes-with-latent-dirichlet-allocation-729112d324a6" rel="nofollow">https:&#x2F;&#x2F;towardsdatascience.com&#x2F;finding-magic-the-gathering-a...</a>) using non parametric bayesian.<p>But seeing different cluster algorithms in action is very enlightening.
home_project123大约 6 年前
How many people would like to play MtG vs a good AI?<p>How dominant is the social aspect when playing online?<p>(Lets ignore copy right issues for the moment)
评论 #19562970 未加载
评论 #19563112 未加载