TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Chaitin's Constant

81 点作者 mgreenleaf超过 5 年前

10 条评论

fxj超过 5 年前
He even did more:<p>Mathematician GregoryChaitin defines elegance in computer programming in this way: A computer program written in a given language is elegant if no smaller program written in the same language has the same output. He goes on to prove that it is impossible to prove that a given program above a certain very low level of complexity is elegant.<p><a href="https:&#x2F;&#x2F;wiki.c2.com&#x2F;?ChaitinElegance" rel="nofollow">https:&#x2F;&#x2F;wiki.c2.com&#x2F;?ChaitinElegance</a><p>And he gave some examples in his book.<p><a href="http:&#x2F;&#x2F;jillian.rootaction.net&#x2F;~jillian&#x2F;science&#x2F;chaitin&#x2F;www.cs.umaine.edu&#x2F;chaitin&#x2F;unknowable&#x2F;index.html" rel="nofollow">http:&#x2F;&#x2F;jillian.rootaction.net&#x2F;~jillian&#x2F;science&#x2F;chaitin&#x2F;www.c...</a><p>See the example code in LISP here:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;darobin&#x2F;chaitin-lisp" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;darobin&#x2F;chaitin-lisp</a>
评论 #22099576 未加载
评论 #22099700 未加载
评论 #22100417 未加载
评论 #22099081 未加载
jaymzcampbell超过 5 年前
If you want to read a bit more from the mathematician himself on this very topic he wrote an accessible &quot;pop-math&quot; book about it, &quot;Meta Math!: The Quest for Omega&quot; though you&#x27;ll need to look beyond the author&#x27;s rather strange choices of metaphor (<a href="https:&#x2F;&#x2F;www.goodreads.com&#x2F;book&#x2F;show&#x2F;249849.Meta_Math_" rel="nofollow">https:&#x2F;&#x2F;www.goodreads.com&#x2F;book&#x2F;show&#x2F;249849.Meta_Math_</a>).
评论 #22101170 未加载
opengrave超过 5 年前
I just want to drop this playlist here <a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=HLPO-RTFU2o&amp;list=PL86ECDEDE3FA8D8D1" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=HLPO-RTFU2o&amp;list=PL86ECDEDE3...</a> as its one of my fav lectures<p>Gregory Chaitin Lecture at Carnegie-Mellon University in 2000, he gives a bit of history of parts of math&#x2F;computing that leads up to him talking about qualities of random. He touches on Cantor, Bertrand Russell, Hilbert, Gödel and Turing.
评论 #22104425 未加载
deepnotderp超过 5 年前
Afaict Chaitin independently came up with the concept of Kolmogorov complexity... as a teenager!
daxfohl超过 5 年前
The surprising thing to me was, following the link to &quot;normal numbers&quot;, that this is called out as one of the only proved irrational normal numbers, even though it is proven that the set of irrational numbers is normal almost everywhere.
me_me_me超过 5 年前
Can somebody explain to me how is this useful? Is it used for anything?<p>Or is it pure theoretical concept with interesting emerging properties.
评论 #22098793 未加载
评论 #22098937 未加载
评论 #22098701 未加载
KboPAacDA3超过 5 年前
Numberphile has a video explaining the relationship between the number categories, and includes a brief discussion of where Chaitin&#x27;s Constant belongs.<p><a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=5TkIe60y2GI" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=5TkIe60y2GI</a>
Chris2048超过 5 年前
In contrast: <a href="https:&#x2F;&#x2F;www.jamesrmeyer.com&#x2F;topics&#x2F;chaitins-omega.html" rel="nofollow">https:&#x2F;&#x2F;www.jamesrmeyer.com&#x2F;topics&#x2F;chaitins-omega.html</a>
benji-york超过 5 年前
I&#x27;m a fan of Fulton&#x27;s constant.<p>Fulton&#x27;s constant is any number of 9s. E.g., 9, 999, or 999999.
dboreham超过 5 年前
Not to be confused with his Croissant.
评论 #22101631 未加载