TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Using SIMD to aggregate billions of values per second

171 点作者 bluestreak大约 5 年前

16 条评论

bluestreak大约 5 年前
QuestDB co-founder and CTO here - happy to share questdb, a performance-driven open-source time-series database that uses SQL.<p>High performance databases have a reputation of being inaccessible. They are expensive, closed-source, and require complex proprietary languages.<p>We have made our code available under Apache 2.0. Under this new release, QuestDB leverages SIMD instructions, vectorizations and parallel execution to achieve performance figures at the top of the high-performance databases. Results are shown in our blog post.<p>I sincerely hope that you will find this helpful, and that this will unlock new possibilities! In the meantime, we will carry on working on QuestDB, adding more features, and taking this speed to more query types. Feel free to join us on slack or Github if you want to participate.
评论 #22811656 未加载
评论 #22808060 未加载
评论 #22811377 未加载
评论 #22807358 未加载
评论 #22810444 未加载
评论 #22808245 未加载
polskibus大约 5 年前
It would be great if you include clickhouse in your benchmark. It also boasts heavy SIMD use and is free + open source.
leeoniya大约 5 年前
not to hijack too much, but since this is on the topic of timeseries...i&#x27;m currently working on a fast* Canvas2D timeseries chart:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;leeoniya&#x2F;uPlot" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;leeoniya&#x2F;uPlot</a><p>* ~4,000 pts&#x2F;ms on an i5 and integrated gpu
评论 #22808472 未加载
评论 #22811966 未加载
评论 #22810065 未加载
SimonPStevens大约 5 年前
Super interesting product I&#x27;ll definitely be taking a deeper look at this when I&#x27;m at work tomorrow.<p>I notice all your comparisons are with floating point and integer types. I was recently looking at SIMD as a possible way to speed up some of our calculations. But we create financial software and most data is typically stored as decimals not floating points to avoid problems with binary floating point precision during calculations.<p>Does quest handle decimals, just without the SIMD speed up?<p>Is this just a dead end? Are there any SIMD implementations that deal with decimal numbers? I considered Hacky workarounds like using integer based types internally and then treating them as as fixed point decimals for display but that doesn&#x27;t give enough range for my purposes.
评论 #22811668 未加载
评论 #22808943 未加载
jmakov大约 5 年前
So how does it compare to Clickhouse?
评论 #22806977 未加载
zbjornson大约 5 年前
Cool. I see you&#x27;re doing a regular (not compensated) horizontal sum in a loop. Horizontal sums are slow, but I&#x27;m guessing you wanted to have exactly the same result as if the sum was calculated sequentially (for doubles)? Do you know if any databases use more accurate summation methods (compensated summation)?
评论 #22808905 未加载
quod_2058大约 5 年前
I came across QuestDB in the past, but never tried myself. At my company, we use kx and onetick. Could you please elaborate why you are also comparing with Postgres since it&#x27;s not really a time-series database nor revendicating to be part of the &quot;high performance&quot; club?
评论 #22808740 未加载
评论 #22803895 未加载
binomiq大约 5 年前
Were these benchmarks before or after 2020.03.26? There was a bug that caused max operations to take twice as long.<p>From the KDB+ 4.0 release notes:<p>2020.03.26 FIX fixed performance regression for max. e.g. q)x:100000000?100;system&quot;ts:10 max x&quot;
评论 #22811441 未加载
sirffuzzylogik大约 5 年前
The numbers are impressive, especially because it is against kdb. q&#x2F;kdb is mostly finance focused and closed source so not really flexible. questdb has an advantage on this, it might be a bit of a tangent but I wonder if this could be used to replace redis, I can see how having SQL as a querying language could be a big plus.
评论 #22804122 未加载
stereosteve大约 5 年前
In the reference there&#x27;s no mention of SQL Window functions. Is it possible to do multiple moving averages over different time spans?<p>If not, are there plans to add support in the future?
评论 #22807653 未加载
jeromerousselot大约 5 年前
Great work! 2.3x faster than kdb and 500x than postgres for sum (double) time series What are your goals for the next release?
评论 #22803989 未加载
popotamonga大约 5 年前
I assume the values must be all be in memory beforehand and not hard storage.
评论 #22807569 未加载
continuations大约 5 年前
What about data compression? How does that compare to other time series DBs?
评论 #22807067 未加载
georgewfraser大约 5 年前
What dialect of SQL are you using?
评论 #22808729 未加载
sch00lb0y大约 5 年前
is it difficult to add SIMD to the existing time-series database?
评论 #22810133 未加载
johndoe42377大约 5 年前
This can&#x27;t be called a database due to lacking of any persistent storage. It does not survive a system crash.<p>It is a structured in-memory (or rather in-JVM) cache with a rudimentary SQL interface.<p>Calling things by its proper names is a half-way to intelligence.