TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

(Re)Discovering Protein Structure and Function Through Language Modeling

1 点作者 baylearn将近 5 年前

1 comment

baylearn将近 5 年前
BERTology Meets Biology: Interpreting Attention in Protein Language Models<p>Abstract<p>Transformer architectures have proven to learn useful representations for protein classification and generation tasks. However, these representations present challenges in interpretability. Through the lens of attention, we analyze the inner workings of the Transformer and explore how the model discerns structural and functional properties of proteins. We show that attention (1) captures the folding structure of proteins, connecting amino acids that are far apart in the underlying sequence, but spatially close in the three-dimensional structure, (2) targets binding sites, a key functional component of proteins, and (3) focuses on progressively more complex biophysical properties with increasing layer depth. We also present a three-dimensional visualization of the interaction between attention and protein structure. Our findings align with known biological processes and provide a tool to aid discovery in protein engineering and synthetic biology.<p>Paper: <a href="https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2006.15222" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;2006.15222</a><p>Code: <a href="https:&#x2F;&#x2F;github.com&#x2F;salesforce&#x2F;provis" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;salesforce&#x2F;provis</a>