TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Interpretability in ML: A Broad Overview

1 点作者 owenshen24将近 5 年前

1 comment

owenshen24将近 5 年前
With the rise of highly effective black box models, there&#x27;s been a rise in interest towards interpretability for machine learning. This is an area I&#x27;m excited about, so I did a dive into the existing research.<p>I found a few surprising things (lack of user studies and some explanations even &quot;working&quot; on randomly initialized models), and I wanted to share a glimpse into the field for others who might be interested.<p>There&#x27;s definitely a lot more room to explore, be it from the usability standpoint or from the more technical standpoint. Hopefully this can be an accessible jumping off point for others trying to enter the conversation.