TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: Data Matching and Reconciliation machine learning algorithms suggestions

3 点作者 maddy1512将近 5 年前
I am trying to solve Data reconciliation problem using ML and need suggestions on which algorithm would be suitable? Follow the link to get more elaboration: https://www.kaggle.com/questions-and-answers/171307

2 条评论

Imanari将近 5 年前
In your example it seems the primary clue to find matches is the name, i.e. &#x27;ABC&#x27; + Corp&#x2F;Des&#x2F;etc. So how about doing some fuzzy string matching? Once you have done this you can identify edge cases and additionally group by dates or whatever.<p>So you would have &#x27;ABC&#x27; in L and a selection of matches in S. If not all of the matches in S actually belong to the ABC in L you are faced with the Knapsack Problem[0] that you can solve with different methods(sorry, no expert here).<p>[0] <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Knapsack_problem" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Knapsack_problem</a>
doonesbury将近 5 年前
You mean comparing data? For what purpose (to help assess solution) ... and why ML? Surely a rules engine is much more practical.
评论 #24057532 未加载