TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Stanisław Leśniewski: rethinking the philosophy of mathematics [pdf]

71 点作者 danielam超过 4 年前

2 条评论

Kednicma超过 4 年前
It&#x27;s always worth recalling <i>why</i> we bother with set theory. Philosophical objections like Leśneivski&#x27;s are extremely valuable and good insights which we cannot discard trivially. Maybe sets are not good things to study. The main reason that we study sets today is because they are a place where we could study ordinals and the rest of number theory. We know about two bananas, two apples, two trees, etc. but what is two itself? Set theory provides a capable if unsatisfying answer: Two is anything which is uniquely isomorphic to the second ordinal number, which happens to be a particular finite set, and since sets formally contain nothing but other sets, we can manipulate two as a set without having to know about bananas, apples, trees, etc.<p>The modern way to talk about this stuff is via categorification; [0] is a good high-level introduction.<p>[0] <a href="https:&#x2F;&#x2F;math.ucr.edu&#x2F;home&#x2F;baez&#x2F;quantization_and_categorification.html" rel="nofollow">https:&#x2F;&#x2F;math.ucr.edu&#x2F;home&#x2F;baez&#x2F;quantization_and_categorifica...</a>
评论 #24539724 未加载
评论 #24539372 未加载
评论 #24539423 未加载
sanxiyn超过 4 年前
See <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;New_Foundations" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;New_Foundations</a> for another alternative foundation of mathematics.
评论 #24540205 未加载