TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Show HN: Label errors in benchmark ML test sets

2 点作者 anishathalye大约 4 年前

2 条评论

anishathalye大约 4 年前
Hi HN! One of the authors here.<p>We found pervasive errors in the test sets of 10 of the most commonly used benchmark ML datasets, so we made labelerrors.com where anyone can examine the data labels. We think it’s neat to browse through the errors to get an intuitive sense of what kinds of things go wrong (e.g. completely mixed-up labels, like a frog being labeled “cat”, or situations where an image contains multiple things, like a bucket full of baseballs being labeled “bucket”), so that’s why we built this errors gallery. To our surprise, there are lots of errors, even in gold standard datasets like ImageNet and MNIST.<p>For those who want to dig into the details, we have a blog post here: <a href="https:&#x2F;&#x2F;l7.curtisnorthcutt.com&#x2F;label-errors" rel="nofollow">https:&#x2F;&#x2F;l7.curtisnorthcutt.com&#x2F;label-errors</a>, where we talk more about the study and the implications<p>Happy to answer any questions here!
anishathalye大约 4 年前
Also of interest might be cleanlab (<a href="https:&#x2F;&#x2F;github.com&#x2F;cgnorthcutt&#x2F;cleanlab" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;cgnorthcutt&#x2F;cleanlab</a>), the open-source software we used for initially identifying potentially mislabeled data.