TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Can Transformers Crack the Coding Interview?

1 点作者 jonesn11将近 4 年前

1 comment

jonesn11将近 4 年前
Measuring Coding Challenge Competence With APPS Abstract: While programming is one of the most broadly applicable skills in modern society, modern machine learning models still cannot code solutions to basic problems. It can be difficult to accurately assess code generation performance, and there has been surprisingly little work on evaluating code generation in a way that is both flexible and rigorous. To meet this challenge, we introduce APPS, a benchmark for code generation. Unlike prior work in more restricted settings, our benchmark measures the ability of models to take an arbitrary natural language specification and generate Python code fulfilling this specification. Similar to how companies assess candidate software developers, we then evaluate models by checking their generated code on test cases. Our benchmark includes 10,000 problems, which range from having simple one-line solutions to being substantial algorithmic challenges. We fine-tune large language models on both GitHub and our training set, and we find that the prevalence of syntax errors is decreasing exponentially. Recent models such as GPT-Neo can pass approximately 15% of the test cases of introductory problems, so we find that machine learning models are beginning to learn how to code. As the social significance of automatic code generation increases over the coming years, our benchmark can provide an important measure for tracking advancements.<p>(Source: Dan Hendrycks et al.)