TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Most important metrics for labeling data

2 点作者 dpleban超过 3 年前
There are a lot of great articles about measuring the performance of data annotator’s agreement on labels, like this one https:&#x2F;&#x2F;towardsdatascience.com&#x2F;the-definite-guide-for-creating-an-academic-level-dataset-with-industry-requirements-and-6db446a26cb2.<p>I see mentions in a lot of places of Cohen’s Kappa&#x2F;Krippendorf’s alpha, Fleischer’s Kappa, Comparing to predefined ground truth, etc.<p>If you’re managing an annotation process in your organization, how do you evaluate your annotators, and what challenges have you faced in the process?<p>As a side note, is anyone using programmatic labeling in a real dataset? Thoughts?

暂无评论

暂无评论