TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Neural network from scratch

208 点作者 bretthopper超过 3 年前

15 条评论

cercatrova超过 3 年前
If you actually want to understand and implement neural nets from scratch, look into 3Blue1Brown&#x27;s videos as well as Andrew Ng&#x27;s course.<p><a href="https:&#x2F;&#x2F;www.3blue1brown.com&#x2F;topics&#x2F;neural-networks" rel="nofollow">https:&#x2F;&#x2F;www.3blue1brown.com&#x2F;topics&#x2F;neural-networks</a><p><a href="https:&#x2F;&#x2F;www.coursera.org&#x2F;learn&#x2F;machine-learning" rel="nofollow">https:&#x2F;&#x2F;www.coursera.org&#x2F;learn&#x2F;machine-learning</a>
评论 #29807674 未加载
评论 #29808321 未加载
评论 #29817319 未加载
alephxyz超过 3 年前
&quot;from scratch&quot; but uses autograd and glosses over backpropagation.
评论 #29806372 未加载
评论 #29804477 未加载
评论 #29805274 未加载
bigdict超过 3 年前
<p><pre><code> import torch as scratch from scratch import nn</code></pre>
评论 #29808532 未加载
srvmshr超过 3 年前
Interesting find. Just FYI, this repo has been the OG for several years, when it comes to building NN from scratch:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;eriklindernoren&#x2F;ML-From-Scratch" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;eriklindernoren&#x2F;ML-From-Scratch</a>
sgdjgkeirj超过 3 年前
For autograd from scratch, see <a href="https:&#x2F;&#x2F;github.com&#x2F;karpathy&#x2F;micrograd" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;karpathy&#x2F;micrograd</a> and&#x2F;or<p><a href="https:&#x2F;&#x2F;windowsontheory.org&#x2F;2020&#x2F;11&#x2F;03&#x2F;yet-another-backpropagation-tutorial&#x2F;" rel="nofollow">https:&#x2F;&#x2F;windowsontheory.org&#x2F;2020&#x2F;11&#x2F;03&#x2F;yet-another-backpropa...</a>
bullen超过 3 年前
I think NNs are going to be a challenge as complexity grows.<p>I&#x27;m trying to make mobs behave autonomously in my 3D action MMO.<p>The memory (depth) I would need for that to succeed and the processing power to do it in real-time is making my head spin.<p>Let&#x27;s hope Raspberry 5 has some hardware to help with this.<p>At this point I&#x27;m probably going to have some state machine AI (think mobs in Minecraft; basically check range &#x2F; view then target and loop) but instead of deterministic or purely random I&#x27;m going to add some NN randomness to the behaviour so that it can be interesting without just adding quantity (more mobs).<p>So the inputs would be the map topography and entities (mobs and players) and the output whether to engage or not, the backpropagation would be success rate I guess? Or am I thinking about this the wrong way?<p>I wonder what adding a _how_ to the same network after the _what_ would look like, probably a direction as output instead of just an entity id?
评论 #29807396 未加载
评论 #29807899 未加载
评论 #29809109 未加载
adamiscool8超过 3 年前
I remember doing this in PHP(4? 5?) for my undergrad capstone project because I had a looming due date and it was the dev environment I had readily available. No helpful libraries in that decade. Great way to really grok the material, and really lets me appreciate how spoiled we are today in the ML space.
评论 #29805623 未加载
gbersac超过 3 年前
Interesting read, but there&#x27;s a few things I haven&#x27;t understood. In the training [function](<a href="https:&#x2F;&#x2F;colab.research.google.com&#x2F;drive&#x2F;1YRp9k_ORH4wZMqXLNkc3Ir5w4B5f-8Pa?usp=sharing" rel="nofollow">https:&#x2F;&#x2F;colab.research.google.com&#x2F;drive&#x2F;1YRp9k_ORH4wZMqXLNkc...</a>):<p>1- In the instruction `hidden_layer.data[index] -= learning_rate * hidden_layer.grad.data[index]`where was the `hidden_layer.grad` value updated?<p>2- from what I&#x27;ve understood, we&#x27;ll update the hidden_layer according to the inclination of the error function (because we want to minimize it). But where are `error.backward()` and `hidden_layer.grad` interconnected?
评论 #29807704 未加载
评论 #29813621 未加载
parasdahal超过 3 年前
For those interested in simple neural networks to CNN and RNNs implemented with just Numpy (including backprop):<p><a href="https:&#x2F;&#x2F;github.com&#x2F;parasdahal&#x2F;deepnet" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;parasdahal&#x2F;deepnet</a>
rg111超过 3 年前
If you are interested in learning what makes a Deep Learning library, and want to code one, for learning experience, you should check out- Minitorch [0].<p>[0]: <a href="https:&#x2F;&#x2F;github.com&#x2F;minitorch&#x2F;" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;minitorch&#x2F;</a>
perfopt超过 3 年前
How important is it to learn DNN&#x2F;NN from scratch? I have several years of experience working in the tech industry and I am learning DNN for applying it in my domain. Also for hobby side projects.<p>I did the ML Coursera course by Andrew Ng a few years ago. I liked the material but I felt the course focused a little too much on the details and not enough on actual application.<p>Would learning DNN from a book like 1. <a href="https:&#x2F;&#x2F;www.manning.com&#x2F;books&#x2F;deep-learning-with-pytorch" rel="nofollow">https:&#x2F;&#x2F;www.manning.com&#x2F;books&#x2F;deep-learning-with-pytorch</a> or 2. <a href="https:&#x2F;&#x2F;www.manning.com&#x2F;books&#x2F;deep-learning-with-python-second-edition?query=deep%20learning%20with%20python" rel="nofollow">https:&#x2F;&#x2F;www.manning.com&#x2F;books&#x2F;deep-learning-with-python-seco...</a><p>Be a better approach for someone looking to learn concepts and application rather than the detailed mathematics behind it?<p>If yes, which of these two books (or alternative) would you recommend ?
zbendefy超过 3 年前
Nice! I made a gpu accelerated backpropagation lib a while ago to learn about NNs, if you are interested check it out here: <a href="https:&#x2F;&#x2F;github.com&#x2F;zbendefy&#x2F;machine.academy" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;zbendefy&#x2F;machine.academy</a>
iamricks超过 3 年前
I was disappointed when i realized this isn’t Sentdex’s NNFS. He makes really good content.
评论 #29808351 未加载
评论 #29808345 未加载
评论 #29810110 未加载
lindwhi超过 3 年前
You can&#x27;t definitely start Neural network without learning other concepts.
shimonabi超过 3 年前
I did this for my AI class. You can watch the result here: <a href="https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=w2x2t03xj2A" rel="nofollow">https:&#x2F;&#x2F;www.youtube.com&#x2F;watch?v=w2x2t03xj2A</a>