TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

StarSpace: General neural model for efficient learning of entity embeddings

2 点作者 denimboy大约 3 年前

1 comment

denimboy大约 3 年前
StarSpace<p>StarSpace is a general-purpose neural model for efficient learning of entity embeddings for solving a wide variety of problems:<p><pre><code> Learning word, sentence or document level embeddings. Information retrieval: ranking of sets of entities&#x2F;documents or objects, e.g. ranking web documents. Text classification, or any other labeling task. Metric&#x2F;similarity learning, e.g. learning sentence or document similarity. Content-based or Collaborative filtering-based Recommendation, e.g. recommending music or videos. Embedding graphs, e.g. multi-relational graphs such as Freebase. Image classification, ranking or retrieval (e.g. by using existing ResNet features). </code></pre> In the general case, it learns to represent objects of different types into a common vectorial embedding space, hence the star (&#x27;*&#x27;, wildcard) and space in the name, and in that space compares them against each other. It learns to rank a set of entities&#x2F;documents or objects given a query entity&#x2F;document or object, which is not necessarily the same type as the items in the set.