TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

The Trouble with Five (2007)

53 点作者 the-mitr大约 3 年前

3 条评论

jl2718大约 3 年前
I thought this was going to be about fifth degree polynomials, and now after seeing the sphere, it’s got me thinking about factorization on the toroidal number system.<p>(Note: my swipe keyboard got “toroidal” on a mangled swipe and turned “number” into “bumble”. Sometimes I wonder whether this thing is reading my mind or dictating thoughts to me.)
peterburkimsher大约 3 年前
<i>&quot;Another non-flat geometry, hyperbolic geometry, even allows infinitely many ways to tile the plane by regular pentagons. ... The flatness of Euclidean space seems to interfere with the ability of five-fold shapes to tile. Somehow, fiveness and flatness have a difficult time getting along together.&quot;</i><p>Could this be related to 5 being a prime number? Are there any examples or counter-examples of prime-number sided shapes tiling the plane?
评论 #31069656 未加载
评论 #31068100 未加载
评论 #31068142 未加载
评论 #31068091 未加载
mkl大约 3 年前
Here&#x27;s a fun rabbit hole of substitution tilings: <a href="https:&#x2F;&#x2F;tilings.math.uni-bielefeld.de&#x2F;substitution&#x2F;" rel="nofollow">https:&#x2F;&#x2F;tilings.math.uni-bielefeld.de&#x2F;substitution&#x2F;</a><p>Run substitutionList.show(1, 1000) in the browser console to show them all on one page.