This is exciting news! What's also exciting is that it's not just C++ that can run on this supercomputer; there is also good (currently unofficial) support for programming those GPUs from Julia, via the AMDGPU.jl library (note: I am the author/maintainer of this library). Some of our users have been able to run AMDGPU.jl's testsuite on the Crusher test system (which is an attached testing system with the same hardware configuration as Frontier), as well as their own domain-specific programs that use AMDGPU.jl.<p>What's nice about programming GPUs in Julia is that you can write code once and execute it on multiple kinds of GPUs, with excellent performance. The KernelAbstractions.jl library makes this possible for compute kernels by acting as a frontend to AMDGPU.jl, CUDA.jl, and soon Metal.jl and oneAPI.jl, allowing a single piece of code to be portable to AMD, NVIDIA, Intel, and Apple GPUs, and also CPUs. Similarly, the GPUArrays.jl library allows the same behavior for idiomatic array operations, and will automatically dispatch calls to BLAS, FFT, RNG, linear solver, and DNN vendor-provided libraries when appropriate.<p>I'm personally looking forward to helping researchers get their Julia code up and running on Frontier so that we can push scientific computing to the max!<p>Library link: <<a href="https://github.com/JuliaGPU/AMDGPU.jl" rel="nofollow">https://github.com/JuliaGPU/AMDGPU.jl</a>>