TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Irrational Base Number System (2000)

49 点作者 vector_spaces将近 3 年前

10 条评论

svat将近 3 年前
Better articles (IMO) at Wikipedia:<p><a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Non-integer_base_of_numeration" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Non-integer_base_of_numeration</a><p>Example: <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Golden_ratio_base" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Golden_ratio_base</a><p><a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Non-standard_positional_numeral_systems" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Non-standard_positional_numera...</a> has a long list.<p>An interesting one: base 2i <a href="https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Quater-imaginary_base" rel="nofollow">https:&#x2F;&#x2F;en.wikipedia.org&#x2F;wiki&#x2F;Quater-imaginary_base</a> -- this was introduced in one of the papers Donald Knuth wrote in college.
asimpletune将近 3 年前
The most efficient number system is base e, ie ratio of number of digits that exist to placeholders needed to represent certain numbers.<p>The most efficient integer is actually base 3, which also explains why ternary logic puzzles are so elegant.
评论 #32668878 未加载
评论 #32669893 未加载
评论 #32668810 未加载
评论 #32668679 未加载
etothepii将近 3 年前
The bigger issue seems to be what a digit is. In a &quot;traditional&quot; base system the digits represent a linear spread between base^n and base^{n+1}.
评论 #32668556 未加载
评论 #32671202 未加载
graderjs将近 3 年前
I came up with a slightly different take on irrational radices is to give a finite closed form representation of integers in an irrational base, code and write up here:<p><a href="https:&#x2F;&#x2F;github.com&#x2F;crisdosyago&#x2F;irradix" rel="nofollow">https:&#x2F;&#x2F;github.com&#x2F;crisdosyago&#x2F;irradix</a>
评论 #32672193 未加载
dwheeler将近 3 年前
I wrote something like this also in 2000:<p>&quot;Way Off Base&quot; <a href="https:&#x2F;&#x2F;dwheeler.com&#x2F;essays&#x2F;bases.html" rel="nofollow">https:&#x2F;&#x2F;dwheeler.com&#x2F;essays&#x2F;bases.html</a>
dr_dshiv将近 3 年前
So for instance, in a base pi, pi =1 or pi=10? Does 1 always equal 1? That can’t be right…<p>(Aside, Leibniz invented binary based on inspiration from I Ching. Cool!)
评论 #32670719 未加载
评论 #32670489 未加载
dhosek将近 3 年前
Having multiple representations of the same number isn’t the problem one of the commenters thought. In decimal, for example, 1=0.99999999...
评论 #32671171 未加载
评论 #32670534 未加载
fsckboy将近 3 年前
here&#x27;s my first question (I have enough math background to cogitate or research this and find out the answer, but it&#x27;ll just be another rabbithole, so let me just ask):<p>if anything to the zero power is 1, what does that mean for pi? pi to the 0 is 1? or pi to the 0 is &quot;base ten 1 represented in base pi&quot;?<p>asking because that page starts out stating that 0 is always 0 and 1 is always 1.
评论 #32670993 未加载
评论 #32671112 未加载
tromp将近 3 年前
A bad idea that still merits discussion about the ways in which it is bad...
评论 #32668075 未加载
permo-w将近 3 年前
is the problem essentially not just that if you make irrational numbers the bases, then you make [a significant number of] rational numbers irrational?