TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: Proof Irrelevance and De Morgan's Laws

2 点作者 daly超过 2 年前
I&#x27;m reading two things at the same time<p>99 Variations on a Proof <a href="https:&#x2F;&#x2F;press.princeton.edu&#x2F;books&#x2F;hardcover&#x2F;9780691158839&#x2F;99-variations-on-a-proof" rel="nofollow">https:&#x2F;&#x2F;press.princeton.edu&#x2F;books&#x2F;hardcover&#x2F;9780691158839&#x2F;99...</a><p>and the newly published paper<p>Draft, Sketch, and Prove: Guiding Formal Theorem Provers With Informal Proofs <a href="https:&#x2F;&#x2F;arxiv.org&#x2F;pdf&#x2F;2210.12283.pdf" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;pdf&#x2F;2210.12283.pdf</a><p>As you all know De Morgan&#x27;s Laws provide great simplification of terms to canonical forms. Application of these laws improved circuit design forever.<p>My question: Can &quot;Irrelevance Laws&quot; be developed in proofs so one style of proof can be mechanically converted to another style? If so, can a system like LEAN convert the library to canonical forms?<p>Canonical forms of proof, if they exist, and if they have the proper form, would make it possible to develop &quot;proof compilers&quot; that could generate code from (constructive) proofs. (See Ording 28, p65, of special interest).<p>Is there any reason to believe canonical forms exist? I know that judgment towers can be expanded in various ways. Perhaps there is a mechanical theory to put (some of) the LEAN library in &quot;canonical form&quot;.<p>Beside the book, is there any known collection of proof transformation?

暂无评论

暂无评论