TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

The Two Laws of Dimensional Ontology

4 点作者 sherilm超过 2 年前

1 comment

PaulHoule超过 2 年前
See <a href="https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;manifold.html" rel="nofollow">https:&#x2F;&#x2F;scikit-learn.org&#x2F;stable&#x2F;modules&#x2F;manifold.html</a><p>It&#x27;s not unusual for an interesting surface to be embedded in an N-dimensional space. For instance when people plot Poincare sections for hamiltonian systems like the one you see here<p><a href="https:&#x2F;&#x2F;mathematica.stackexchange.com&#x2F;questions&#x2F;61637&#x2F;poincare-section-of-an-hamiltonian" rel="nofollow">https:&#x2F;&#x2F;mathematica.stackexchange.com&#x2F;questions&#x2F;61637&#x2F;poinca...</a><p>the energy surface might be a 3 dimensional surface in a four dimensional space and you have a trigger like the trigger of an oscilloscope that eliminates one dimension so the surface involved is a 2 dimensional surface, say a sphere. If you are not well aligned, the projections of the tori could appear folded over when you project that sphere down to a plane. It&#x27;s not a problem so much with visualizing a higher dimensional space because the surface involved is a 2-d surface but embedded in 3-d the topology can be other than you expect.