TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: What’s the optimal approach for KNN (K- Nearest Neighbor)?

6 点作者 trifit大约 2 年前

2 条评论

PaulHoule大约 2 年前
Depends on what you want to optimize for. See this paper<p><a href="https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;1702.08734" rel="nofollow">https:&#x2F;&#x2F;arxiv.org&#x2F;abs&#x2F;1702.08734</a><p>And this library that it describes<p><a href="https:&#x2F;&#x2F;github.com&#x2F;facebookresearch&#x2F;faiss">https:&#x2F;&#x2F;github.com&#x2F;facebookresearch&#x2F;faiss</a><p>Which is an optimal use of your time as you can install it in a minute with anaconda if you use Python.
eesmith大约 2 年前
In 2D? 3D? &lt;10D? In high-dimensional space?<p>Binary, continuous, or count vectors, or a mix? Or something more novel?<p>What&#x27;s your distance or similarity method?<p>Is there a bound to your search?<p>Exact or approximate? If approximate, what counts as good enough?<p>All of these affect &quot;optimal&quot;.