TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: What's your best resource for keeping up-to-date on AI developments?

116 点作者 GavCo大约 2 年前
Interested in a HN-like source of information and discussions on AI news. Ideally it would include slightly more in-depth and in the weeds discussions on AI research and developments, while staying away from basic news stories and applications.

27 条评论

ulrikhansen54大约 2 年前
<a href="https:&#x2F;&#x2F;paperswithcode.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;paperswithcode.com&#x2F;</a> is arguably the best source and overview of all the research. Its also (somewhat) unbiased (owned by Meta), not being an SEO-optimised company blog.
评论 #35480553 未加载
评论 #35480276 未加载
评论 #35480312 未加载
评论 #35480674 未加载
AdrienBrault大约 2 年前
Not &quot;HN-like&quot;, but I have found Simon Willison&#x27;s blog&#x2F;newsletter very helpful: - <a href="https:&#x2F;&#x2F;simonwillison.net" rel="nofollow">https:&#x2F;&#x2F;simonwillison.net</a> - <a href="https:&#x2F;&#x2F;simonw.substack.com" rel="nofollow">https:&#x2F;&#x2F;simonw.substack.com</a>
tikkun大约 2 年前
My take goes against most of the other comments here – don&#x27;t keep up. It&#x27;s not practical, the amount of new information and development is too much to process.
d4rkp4ttern大约 2 年前
I have a daily workflow of scanning r&#x2F;ML and HN and I subscribe to a few newsletters that I came across. I save bookmarks of tools and repos to raindrop.io and articles to readwise&#x2F;reader. One good trick is to use the readwise feed email when subscribing to newsletters, so the newsletters go to Readwise instead of your personal email.<p>My big unsolved problem is Twitter — how do I avoid going on twitter more than a half hour a day, by using some type of twitter based filter&#x2F;aggregator? Labml daily is a relatively good trend aggregator informed by Twitter. But I still keep discovering interesting things on Twitter not covered by any of the above. And BTW I bookmark twitter threads to Readwise&#x2F;reader as well.
评论 #35480643 未加载
评论 #35480856 未加载
A_D_E_P_T大约 2 年前
Zvi Mowshowitz&#x27;s blog.<p>He has recently started posting incredibly detailed weekly AI roundups. Here&#x27;s one from yesterday:<p><a href="https:&#x2F;&#x2F;thezvi.wordpress.com&#x2F;2023&#x2F;04&#x2F;06&#x2F;ai-6-agents-of-change&#x2F;" rel="nofollow">https:&#x2F;&#x2F;thezvi.wordpress.com&#x2F;2023&#x2F;04&#x2F;06&#x2F;ai-6-agents-of-chang...</a>
评论 #35480549 未加载
评论 #35480543 未加载
aldarisbm大约 2 年前
<a href="https:&#x2F;&#x2F;www.emergentmind.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.emergentmind.com&#x2F;</a>
agomez314大约 2 年前
I subscribe to The Neuron which keeps me reasonably informed in a short time amount of time: <a href="https:&#x2F;&#x2F;www.theneurondaily.com" rel="nofollow">https:&#x2F;&#x2F;www.theneurondaily.com</a>
poulpy123大约 2 年前
&quot;hijacking&quot; the post to ask where I can find a good introduction to machine learning and AI. Not how to use this or this library but the fundamentals and principles behind. Preferably something explaining clearly the principles first then explaining the maths (from the beginning, my maths are quite far now) then showing practical usage&#x2F;development (in any high level language like python or julia). I do not need to jump straight to the latest algorithms, I prefer starting with building bricks first
评论 #35480326 未加载
评论 #35480878 未加载
评论 #35485597 未加载
评论 #35480658 未加载
评论 #35480511 未加载
评论 #35480324 未加载
评论 #35480323 未加载
评论 #35480368 未加载
评论 #35480680 未加载
pmoriarty大约 2 年前
Updates like these[1] posted regularly to the ChatGPT subreddit are pretty informative.<p>The real challenge is finding the time to read them all.<p>[1] - <a href="https:&#x2F;&#x2F;www.reddit.com&#x2F;r&#x2F;ChatGPT&#x2F;comments&#x2F;12diapw&#x2F;gpt4_week_3_chatbots_are_yesterdays_news_ai&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.reddit.com&#x2F;r&#x2F;ChatGPT&#x2F;comments&#x2F;12diapw&#x2F;gpt4_week_...</a>
评论 #35480900 未加载
ackatz大约 2 年前
I recently started an AI news aggregator here: <a href="https:&#x2F;&#x2F;ainewsfeed.io" rel="nofollow">https:&#x2F;&#x2F;ainewsfeed.io</a><p>I am planning on adding more feeds very soon to increase the amount of content<p>I also have an aggregator for Cybersecurity: <a href="https:&#x2F;&#x2F;cyberfeed.io" rel="nofollow">https:&#x2F;&#x2F;cyberfeed.io</a>
HugoDz大约 2 年前
Made this :)<p><a href="https:&#x2F;&#x2F;www.haickernews.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.haickernews.com&#x2F;</a>
eon01大约 2 年前
Kala - AI&#x2F;ML weekly (<a href="https:&#x2F;&#x2F;faun.dev&#x2F;newsletter&#x2F;kala" rel="nofollow">https:&#x2F;&#x2F;faun.dev&#x2F;newsletter&#x2F;kala</a>)<p>You&#x27;ll find both curated news, stories, tutorials, tools, and in-depth content.<p>Disclaimer: I&#x27;m the curator of this newsletter.
zulban大约 2 年前
Lots of sources. However, Last Week in AI has been a great podcast since I started listening a couple months ago. Like covid, beware of resources that only started covering AI because it&#x27;s trendy lately. They quickly summarize and discuss papers and news.
ReDeiPirati大约 2 年前
For years I have followed top researchers on Twitter and helped quite a bit to stay up to date on the topic. Today I think it&#x27;s still quite good for that purpose, although the countless way that Musk is trying to make it worse...
评论 #35480825 未加载
edouard-harris大约 2 年前
<a href="https:&#x2F;&#x2F;www.aitracker.org&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.aitracker.org&#x2F;</a> is good for a general audience, but doesn&#x27;t go into as much details as some of the more research-oriented roundups.
anonzzzies大约 2 年前
HN. It’s curated by the smartest minds. And Arvix but that’s very work intensive.
评论 #35498516 未加载
评论 #35480879 未加载
mooreds大约 2 年前
This is a bit more product focused, but I&#x27;ve found it useful: <a href="https:&#x2F;&#x2F;www.latent.space&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.latent.space&#x2F;</a><p>It&#x27;s a newsletter&#x2F;podcast.
bachmitre大约 2 年前
This weekly newsletter is excellent: <a href="https:&#x2F;&#x2F;www.deeplearning.ai&#x2F;the-batch&#x2F;" rel="nofollow">https:&#x2F;&#x2F;www.deeplearning.ai&#x2F;the-batch&#x2F;</a>
ksplicer大约 2 年前
I check out <a href="https:&#x2F;&#x2F;papers.labml.ai&#x2F;" rel="nofollow">https:&#x2F;&#x2F;papers.labml.ai&#x2F;</a> semi-frequently to see what research twitter is talking about.
artemonster大约 2 年前
While we are on the topic, can somebody give a TLDR what breakthroughs made current AI advancements? From what I understand the &quot;foundation&quot; is exactly the same as it was 40 years ago - same neural networks, same activation functions, same architectures, same gradient descent. If I ask some &quot;skeptical&quot; crowd they say: &quot;nothing is new, we just started using GPUs&quot;. Some say there were breakthroughs in learning algorithms to facilitate deep learning (i.e. that features are trained and learned by deeper layers automatically). Can someone elaborate on this, please? I tried googling and I only get crap articles that just &quot;wave hands&quot;
评论 #35480788 未加载
评论 #35480590 未加载
adt大约 2 年前
The Memo:<p><a href="https:&#x2F;&#x2F;lifearchitect.ai&#x2F;memo&#x2F;" rel="nofollow">https:&#x2F;&#x2F;lifearchitect.ai&#x2F;memo&#x2F;</a>
benrapscallion大约 2 年前
Synced [1] <a href="https:&#x2F;&#x2F;syncedreview.com&#x2F;" rel="nofollow">https:&#x2F;&#x2F;syncedreview.com&#x2F;</a>
lekashman大约 2 年前
I use <a href="https:&#x2F;&#x2F;nextomoro.com" rel="nofollow">https:&#x2F;&#x2F;nextomoro.com</a>
ubj大约 2 年前
TLDR has an AI-specific newsletter you can sign up for:<p><a href="https:&#x2F;&#x2F;tldr.tech&#x2F;ai" rel="nofollow">https:&#x2F;&#x2F;tldr.tech&#x2F;ai</a>
fswd大约 2 年前
various discord channels if you want the latest. As much as I hate discord&#x27;s UI and ecosystem, it&#x27;s value in up to date information about AI can&#x27;t be matched.
评论 #35484758 未加载
pabl0rg大约 2 年前
Mn bc b n bn bn Ng bn v
0x008大约 2 年前
youtube