TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Which vector similarity metric should I use?

2 点作者 imaurer大约 2 年前

2 条评论

sharemywin大约 2 年前
Does this seem right?<p>| Task | Distance Measure |<p>|-------------------------------|-----------------------|<p>| Document classification | Cosine Distance |<p>| Semantic search | Cosine Distance |<p>| Recommendation systems | Cosine Distance |<p>| Image recognition | Euclidean Distance (L2)|<p>| Speech recognition | Euclidean Distance (L2)|<p>| Handwriting analysis | Euclidean Distance (L2)|<p>| Recommendation systems | Inner Product (Dot Product)|<p>| Collaborative filtering | Inner Product (Dot Product)|<p>| Matrix factorization | Inner Product (Dot Product)|<p>| Image processing | L2-Squared Distance |<p>| Error detection and correction| Hamming Distance |<p>| DNA sequence comparison | Hamming Distance |<p>| Taxicab geometry | Manhattan Distance |<p>| Chessboard distance | Manhattan Distance |
评论 #35964027 未加载
messe大约 2 年前
Even ignoring vector magnitudes, wouldn&#x27;t cosine distance as a measure of similarity only make sense if you&#x27;re working with a convex set? That seems like it&#x27;s far from a guarantee working in a high-dimensional space.
评论 #35963797 未加载