TE
科技回声
首页
24小时热榜
最新
最佳
问答
展示
工作
中文
GitHub
Twitter
首页
Which vector similarity metric should I use?
2 点
作者
imaurer
大约 2 年前
2 条评论
sharemywin
大约 2 年前
Collapse
Does this seem right?<p>| Task | Distance Measure |<p>|-------------------------------|-----------------------|<p>| Document classification | Cosine Distance |<p>| Semantic search | Cosine Distance |<p>| Recommendation systems | Cosine Distance |<p>| Image recognition | Euclidean Distance (L2)|<p>| Speech recognition | Euclidean Distance (L2)|<p>| Handwriting analysis | Euclidean Distance (L2)|<p>| Recommendation systems | Inner Product (Dot Product)|<p>| Collaborative filtering | Inner Product (Dot Product)|<p>| Matrix factorization | Inner Product (Dot Product)|<p>| Image processing | L2-Squared Distance |<p>| Error detection and correction| Hamming Distance |<p>| DNA sequence comparison | Hamming Distance |<p>| Taxicab geometry | Manhattan Distance |<p>| Chessboard distance | Manhattan Distance |
评论 #35964027 未加载
messe
大约 2 年前
Collapse
Even ignoring vector magnitudes, wouldn't cosine distance as a measure of similarity only make sense if you're working with a convex set? That seems like it's far from a guarantee working in a high-dimensional space.
评论 #35963797 未加载