TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Ask HN: Materials to learn machine learning and deep learning in 2023?

7 点作者 debanjan16将近 2 年前
The materials may include courses, tutorials, books, etc.<p>The topics can include:<p>1. Data pre-processing<p>2. Library specific tutorials (e.g. PyTorch, MxNet, scikit-learn, etc)<p>3. Building things from scratch (using numpy, scipy, vanilla python, etc)<p>4. Foundations and theory behind the popular algorithms<p>5. Applications like Computer Vision, NLP, etc.<p>6. How to read and implement research papers.<p>7. The math of ML&#x2F;DL<p>The difficulty of the materials can be anything ranging from someone with programming experience starting out or someone who is a practitioner and wants to look at more deeper explanations.

1 comment

optbuild将近 2 年前
CMU has two open courses on deep learning which are very good.<p>1. Deep Learning - <a href="https:&#x2F;&#x2F;deeplearning.cs.cmu.edu&#x2F;F23&#x2F;index.html" rel="nofollow noreferrer">https:&#x2F;&#x2F;deeplearning.cs.cmu.edu&#x2F;F23&#x2F;index.html</a><p>2. Deep Learning Systems - <a href="https:&#x2F;&#x2F;dlsyscourse.org&#x2F;" rel="nofollow noreferrer">https:&#x2F;&#x2F;dlsyscourse.org&#x2F;</a><p>The second course dives much deeper into the internals of the libraries and all.