TE
科技回声
首页24小时热榜最新最佳问答展示工作
GitHubTwitter
首页

科技回声

基于 Next.js 构建的科技新闻平台,提供全球科技新闻和讨论内容。

GitHubTwitter

首页

首页最新最佳问答展示工作

资源链接

HackerNews API原版 HackerNewsNext.js

© 2025 科技回声. 版权所有。

Understanding Percentiles (2021)

47 点作者 subomi超过 1 年前

3 条评论

gumby超过 1 年前
It’s just the generalization of the median to more than two buckets (in this case 100 of them).
评论 #37247942 未加载
评论 #37250587 未加载
评论 #37248071 未加载
评论 #37248060 未加载
andreasha超过 1 年前
<a href="https:&#x2F;&#x2F;webcache.googleusercontent.com&#x2F;search?q=cache:k3QOarK_7X8J:https:&#x2F;&#x2F;blog.shalvah.me&#x2F;posts&#x2F;understanding-percentiles&amp;cd=8&amp;hl=sv&amp;ct=clnk&amp;gl=se" rel="nofollow noreferrer">https:&#x2F;&#x2F;webcache.googleusercontent.com&#x2F;search?q=cache:k3QOar...</a><p>archive.is WIP <a href="https:&#x2F;&#x2F;archive.is&#x2F;wip&#x2F;vLSWG" rel="nofollow noreferrer">https:&#x2F;&#x2F;archive.is&#x2F;wip&#x2F;vLSWG</a>
Xcelerate超过 1 年前
Percentiles become painful when trying to aggregate them. Suppose you record the p99 latency of some service, but you collect these metrics at the rack or data center level. Now you ask, what is the overall p99 latency of the service? Not an easy question to answer. Especially if you automatically subsample older time series data in order to store more of it (I&#x27;ve seen people trying to perform a weighted average of subsampled percentile metrics—it turns into a mess).<p>We need an efficient way to compactly represent the entire distribution of a metric over time so arbitrary aggregations can be performed accurately. There is some research on this topic, but nothing really production-ready that I&#x27;m aware of.
评论 #37249959 未加载
评论 #37250452 未加载
评论 #37250377 未加载